Strategic Growth Areas (SGAs)
Permanent URI for this community
Similar to Destination Areas in structure, Strategic Growth Areas are smaller and aim for regional or national leadership. Strategic Growth Areas represent additional areas of strength, identified by a faculty survey conducted in January 2016. SGAs may mature into Destination Areas.
Browse
Browsing Strategic Growth Areas (SGAs) by Subject "3D printing"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- 3D printing of lignin: Challenges, opportunities and roads onwardEbers, L. -S.; Arya, Aditi; Bowland, C. C.; Glasser, Wolfgang G.; Chmely, S. C.; Naskar, A. K.; Laborie, Marie-Pierre Genevieve (2021-06)As the second most abundant biopolymer on earth, and as a resource recently becoming more available in separated and purified form on an industrial scale due to the development of new isolation technologies, lignin has a key role to play in transitioning our material industry towards sustainability. Additive manufacturing (AM), the most efficient-material processing technology to date, has likewise made great strides to promote sustainable industrial solutions to our needs in engineered products. Bringing lignin research to AM has prompted the emergence of the nascent "lignin 3D printing" field. This review presents the recent state of art of this promising field and highlights its challenges and opportunities. Following a review of the industrial availability, molecular attributes, and associated properties of technical lignins, we review R&D efforts at implementing lignin systems in extrusion-based and stereolithography (SLA) printing technologies. Doing so underlines the adage of lignin research that "all lignins are not created equal," and stresses the opportunity nested in this chemical diversity created mostly by differences in isolation conditions to molecularly select and tune the attributes of technical lignin systems towards desirable properties, be it by modification or polymer blending. Considering the AM design process in its entirety, we finally propose onward routes to bring the full potential to this emerging field. We hope that this review can help promote the unique value and overdue industrial role of lignin in sustainable engineered materials and products.
- Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D PrintingBardot, Madison; Schulz, Michael D. (MDPI, 2020-12-21)3D printing by fused deposition modelling (FDM) enables rapid prototyping and fabrication of parts with complex geometries. Unfortunately, most materials suitable for FDM 3D printing are non-degradable, petroleum-based polymers. The current ecological crisis caused by plastic waste has produced great interest in biodegradable materials for many applications, including 3D printing. Poly(lactic acid) (PLA), in particular, has been extensively investigated for FDM applications. However, most biodegradable polymers, including PLA, have insufficient mechanical properties for many applications. One approach to overcoming this challenge is to introduce additives that enhance the mechanical properties of PLA while maintaining FDM 3D printability. This review focuses on PLA-based nanocomposites with cellulose, metal-based nanoparticles, continuous fibers, carbon-based nanoparticles, or other additives. These additives impact both the physical properties and printability of the resulting nanocomposites. We also detail the optimal conditions for using these materials in FDM 3D printing. These approaches demonstrate the promise of developing nanocomposites that are both biodegradable and mechanically robust.
- Impacts of process-induced porosity on material properties of copper made by binder jetting additive manufacturingKumar, Ashwath Yegyan; Wang, Jue; Bai, Yun; Huxtable, Scott T.; Williams, Christopher B. (Elsevier, 2019-07-03)Binder Jetting (BJ) is an efficient, economical, and scalable Additive Manufacturing (AM) technology that can be used in fabricating parts made of reflective and conductivematerials like copper, which have applications in advanced thermal and electrical components. The primary challenge of BJ is in producing fully dense, homogeneous partswithout infiltration. To this end, copper parts of porosities ranging from2.7% to 16.4%were fabricated via BJ, by varying powder morphology, post-process sintering, and Hot Isostatic Pressing conditions. The aim of this study is to characterize and quantify the effects of porosity on the material properties of Binder Jet pure copper parts. Copper parts with the lowest porosity of 2.7% demonstrated a tensile strength of 176 MPa (80.2% of wrought strength), a thermal conductivity of 327.9 W/m·K (84.5% that ofwrought copper), and an electrical conductivity of 5.6 × 107 S/m (96.6% IACS). The porosity-property relationship in these parts was compared against theoretical and empiricalmodels in the literature for similar structures. These studies contribute towards developing a scientific understanding of the process-property-performance relationship in BJ of copper and other printed metals, which can help in tailoring materials and processing conditions to achieve desired properties.