Scholarly Works, Fralin Biomedical Research Institute at VTC
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Fralin Biomedical Research Institute at VTC by Subject "1116 Medical Physiology"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Fasting and postprandial trimethylamine N-oxide in sedentary and endurance-trained males following a short-term high-fat dietSteele, Cortney N.; Baugh, Mary Elizabeth; Griffin, Laura E.; Neilson, Andrew P.; Davy, Brenda M.; Hulver, Matthew W.; Davy, Kevin P. (Wiley, 2021-08-01)Gut bacteria release trimethylamine (TMA) from dietary substrates. TMA is absorbed and is subsequently oxidized in the liver to produce trimethylamine N-oxide (TMAO). Plasma TMAO levels are positively correlated with risk for type 2 diabetes (T2D) and cardiovascular disease (CVD). High-fat diet (HFD) consumption has been reported to increase fasting and postprandial TMAO in sedentary individuals. However, whether the increase in TMAO with consumption of an HFD is observed in endurance-trained males is unknown. Healthy, sedentary (n = 17), and endurance-trained (n = 7) males consumed a 10-day eucaloric diet comprised of 55% carbohydrate, 30% total fat, and <10% saturated fat prior to baseline testing. Blood samples were obtained in a fasted state and for a 4-hour high-fat challenge (HFC) meal at baseline and then again following 5-day HFD (30% carbohydrate, 55% total fat, and 25% saturated fat). Plasma TMAO and TMA-moiety (choline, betaine, L-carnitine) concentrations were measured using isocratic ultraperformance liquid chromatography-tandem mass spectrometry. Age (23 ±3 vs. 22 ± 2 years) and body mass index (23.0 ± 3.0 vs. 23.5 ± 2.1 kg/m2) were similar (both p > 0.05) in the sedentary and endurance-trained group, respectively. VO2max was significantly higher in the endurance-trained compared with sedentary males (56.7 ± 8.2 vs. 39.9 ± 6.0 ml/kg/min). Neither the HFC nor the HFD evoked a detectable change in plasma TMAO (p > 0.05) in either group. Future studies are needed to identify the effects of endurance training on TMAO production.
- Glioma-induced peritumoral hyperexcitability in a pediatric glioma modelChaunsali, Lata; Tewari, Bhanu P.; Gallucci, Allison; Thompson, Emily G.; Savoia, Andrew; Feld, Noah; Campbell, Susan L. (Wiley, 2020-10-01)Epileptic seizures are among the most common presenting symptom in patients with glioma. The etiology of glioma-related seizures is complex and not completely understood. Studies using adult glioma patient tissue and adult glioma mouse models, show that neurons adjacent to the tumor mass, peritumoral neurons, are hyperexcitable and contribute to seizures. Although it is established that there are phenotypic and genotypic distinctions in gliomas from adult and pediatric patients, it is unknown whether these established differences in pediatric glioma biology and the microenvironment in which these glioma cells harbor, the developing brain, differentially impacts surrounding neurons. In the present study, we examine the effect of patient-derived pediatric glioma cells on the function of peritumoral neurons using two pediatric glioma models. Pediatric glioma cells were intracranially injected into the cerebrum of postnatal days 2 and 3 (p2/3) mouse pups for 7 days. Electrophysiological recordings showed that cortical layer 2/3 peritumoral neurons exhibited significant differences in their intrinsic properties compared to those of sham control neurons. Peritumoral neurons fired significantly more action potentials in response to smaller current injection and exhibited a depolarization block in response to higher current injection. The threshold for eliciting an action potential and pharmacologically induced epileptiform activity was lower in peritumoral neurons compared to sham. Our findings suggest that pediatric glioma cells increase excitability in the developing peritumoral neurons by exhibiting early onset of depolarization block, which was not previously observed in adult glioma peritumoral neurons.