Conservation Management Institute
Permanent URI for this community
The Conservation Management Institute exists to expand the capacity of our partners to manage natural resources effectively. We provide innovative solutions to multi-disciplinary research questions that affect natural resource management in Virginia, North America, and the World. Our core belief is that effective natural resource management must be grounded in sound science.
Browse
Browsing Conservation Management Institute by Title
Now showing 1 - 20 of 47
Results Per Page
Sort Options
- Analysis of Fox Activity and Survival in Foxhound Training EnclosuresKlopfer, Scott D.; Kramer, David; St Germain, Michael J. (Virginia Tech, 2013-03)
- Biological Surveys for Fries Hydroelectric Project in the Upper New River, Grayson County, VirginiaCarey, Caitlin; Orth, Donald J.; Emrick, Verl III (FERC, 2018-04)Operated by Aquenergy Systems, LLC (the Licensee; a subsidiary of Enel Green Power North America, Inc.) and licensed by the Federal Energy Regulatory Commission (FERC), the Fries Hydroelectric Project (the Project; FERC No. 2883) is currently undergoing relicensing using FERC’s Traditional Licensing Process (TLP). The current license for the Project was issued June 10th, 1980 and is set to expire May 31st, 2020. In compliance with the first stage of FERC’s TLP, the Licensee filed its Notice of Intent (NOI) and Pre-Application Document (PAD) with FERC (May 2015; Aquenergy Systems, LLC 2015), conducted a joint meeting and site visit with resource agencies and members of the public to solicit input on information needs and study plans (September 2015), and received written comments from stakeholders identifying information gaps and necessary studies to be performed. Pursuant to input provided from resource agencies and the public, the Licensee prepared and distributed a draft outline of proposed studies and methodology to agencies on March 18, 2016. The Licensee held a follow-up joint agency conference call (March 24th, 2016) to receive feedback on the proposed study plans and to reach an agreement on all reasonable and necessary studies as requested by the agencies. Agency comments and changes were incorporated into study plans and a revised outline was distributed to the agencies on April 15th, 2016...
- Broad-scale geographic and temporal assessment of northern long-eared bat (Myotis septentrionalis) maternity colony-landscape associationGorman, Katherine M.; Deeley, Sabrina M.; Barr, Elaine L.; Freeze, Samuel R.; Kalen, Nicholas; Muthersbaugh, Michael S.; Ford, W. Mark (Inter-Research, 2022-02-24)As the federally threatened northern long-eared bat Myotis septentrionalis continues to decline due to white-nose syndrome (WNS) impacts, the application of effective conservation measures is needed but often hindered by the lack of ecological data. To date, recommended management practices have been adopted in part from other federally listed sympatric species such as the endangered Indiana bat M. sodalis. During the maternity season, these measures have largely focused on conservation of known day-roost habitat, often with little consideration for foraging habitat, particularly riparian areas. We examined acoustic activity of northern longeared bats relative to day-roost and capture data at coastal and interior sites in the District of Columbia, New York, Pennsylvania, Virginia, and West Virginia, USA, over the course of 6 summers (2015-2020), where maternity activity was still documented after the initial arrival and spread of WNS. Acoustic activity of northern long-eared bats relative to forest cover decreased at the acoustic site level (fine scale) but increased at the sampling region level (coarse scale). We observed a positive association of northern long-eared bat acoustic activity with riparian areas. Additionally, we observed higher levels of activity during pregnancy through early lactation period of the reproductive cycle prior to juvenile volancy. Our findings suggest the need for more explicit inclusion of forested riparian habitats in northern long-eared bat conservation planning. Acoustic sampling in spring and early summer rather than mid- to late summer and in forested riparian areas is the most effective strategy for identifying potential active northern long-eared bat maternity colonies on the local landscape.
- Catawba Sustainability Center and Catawba Hospital Renewable Energy Site Planning Process StudyMeyers, Ron; Carstensen, Laurence W.; Ford, W. Mark; Grant, Elizabeth J.; Klopfer, Scott D.; Schenk, Todd; Taylor, Adam (Virginia Tech, 2020-09-29)The transdisciplinary Renewable Energy Facilities Siting Project produced a white paper outlining their proof-of-concept using a case study from the Catawba Valley.
- Characterization of golden-cheeked warbler Dendroica chrysoparia habitat at Fort Hood, Texas, USAEmrick, Verl III (2019-05-26)The golden-cheeked warbler Dendroica chrysoparia is a federally endangered, neotropical-nearctic migrant songbird that breeds in central Texas, USA, and prefers mature, closed canopy oak–Ashe juniper woodlands for nesting and foraging. Fort Hood is an 87 890 ha military reservation located in central Texas in Bell and Coryell Counties on the eastern edge of the Edwards Plateau ecoregion. We surveyed for golden-cheeked warblers and measured habitat variables at 95 separate locations in a 56.6 km2 research area that supports a golden-cheeked warbler breeding population. We detected golden-cheeked warblers on 34 of 95 (36%) point count locations. Principal component analysis was used to reduce the 27 habitat variables to a set of uncorrelated variables. This analysis resulted in the identification of 4 principal components that accounted for 52% of the variance. Logistic regression identified one principal component (ratio of Ashe juniper to other woody species) that was strongly related to golden-cheeked warbler occurrence. Our data indicate that a 4:1 ratio of Ashe juniper to other woody species is an important feature of occupied golden cheeked warbler habitat, particularly in the mid- to upper canopy at Fort Hood.
- Climate characteristics of the Big Levels region, Augusta County, VirginiaKlopfer, Scott D. (Virginia Natural History Society, 1999)
- A Comparison of Systematic Quadrat and Capture-Mark-Recapture Sampling Designs for Assessing Freshwater Mussel PopulationsCarey, Caitlin; Jones, Jess W.; Butler, Robert S.; Kelly, Marcella J.; Hallerman, Eric M. (MDPI, 2019-08-07)Our study objective was to compare the relative effectiveness and efficiency of quadrat and capture-mark-recapture (CMR) sampling designs for monitoring mussels. We collected data on a recently reintroduced population of federally endangered Epioblasma capsaeformis and two nonlisted, naturally occurring species—Actinonaias pectorosa and Medionidus conradicus—in the Upper Clinch River, Virginia, over two years using systematic quadrat and CMR sampling. Both sampling approaches produced similar estimates of abundance; however, precision of estimates varied between approaches, years, and among species, and further, quadrat sampling efficiency of mussels detectable on the substrate surface varied among species. CMR modeling revealed that capture probabilities for all three study species varied by time and were positively associated with shell length, that E. capsaeformis detection was influenced by sex, and that year-to-year apparent survival was high (>96%) for reintroduced E. capsaeformis. We recommend that monitoring projects use systematic quadrat sampling when the objective is to estimate and detect trends in abundance for species of moderate to high densities (>0.2/m2), whereas a CMR component should be incorporated when objectives include assessing reintroduced populations, obtaining reliable estimates of survival and recruitment, or producing unbiased population estimates for species of low to moderate densities (≤0.2/m2).
- Context dependency of disease-mediated competitive release in bat assemblages following white-nose syndromeBombaci, Sara P.; Russell, Robin E.; St Germain, Michael J.; Dobony, Christopher A.; Ford, W. Mark; Loeb, Susan C.; Jachowski, David S. (2021-11)White-nose syndrome (WNS) has caused dramatic declines of several cave-hibernating bat species in North America since 2006, which has increased the activity of non-susceptible species in some geographic areas or during times of night formerly occupied by susceptible species-indicative of disease-mediated competitive release (DMCR). Yet, this pattern has not been evaluated across multiple bat assemblages simultaneously or across multiple years since WNS onset. We evaluated whether WNS altered spatial and temporal niche partitioning in bat assemblages at four locations in the eastern United States using long-term datasets of bat acoustic activity collected before and after WNS arrival. Activity of WNS-susceptible bat species decreased by 79-98% from pre-WNS levels across the four study locations, but only one of our four study sites provided strong evidence supporting the DMCR hypothesis in bats post-WNS. These results suggest that DMCR is likely dependent on the relative difference in activity by susceptible and non-susceptible species groups pre-WNS and the relative decline of susceptible species post-WNS allowing for competitive release, as well as the amount of time that had elapsed post-WNS. Our findings challenge the generality of WNS-mediated competitive release between susceptible and non-susceptible species and further highlight declining activity of some non-susceptible species, especially Lasiurus borealis, across three of four locations in the eastern United States. These results underscore the broader need for conservation efforts to address the multiple potential interacting drivers of bat declines on both WNS-susceptible and non-susceptible species.
- Distribution of Northern Long-eared Bat Summer Habitat on the Monongahela National Forest, West VirginiaDe La Cruz, Jesse L.; Ford, W. Mark; Jones, Shane; Johnson, Joshua B.; Silvis, Alexander (2023-03)Species distribution models enable resource managers to avoid and mitigate impacts to, or enhance habitat of, target species at the landscape level. Persistent declines of northern long-eared bats (Myotis septentrionalis) due to white-nose syndrome have made acquisition of contemporary data difficult. Therefore, use of legacy data may be necessary for creation of species distribution models. We used historical roost and capture records, both individually and in combination, to assess the distribution and availability of northern long-eared bat habitat across the 670,000-ha Monongahela National Forest (MNF), West Virginia, USA. We created random forest presence/pseudo-absence models to examine influences of various biotic and abiotic predictors on both roosting and foraging presence locations of northern long-eared bats. Predicted northern long-eared bat habitat was abundant (43.1% of the MNF) and widely dispersed. Generally, all models suggested that northern long-eared bat habitat was characterized by interior forests containing linear edge features. We observed only 3.4% spatial overlap of habitat based on complete model agreement, but 38.5% of all habitat areas resulted from agreement between capture-only and combination models. Our models provide important assessments of habitat availability necessary for addressing state and federal conservation requirements on the MNF and adjacent eastern West Virginia mountains.
- Distribution of Summer Habitat for the Indiana Bat on the Monongahela National Forest, West VirginiaDe La Cruz, Jesse L.; Ford, W. Mark; Jones, Shane; Johnson, Joshua B.; Silvis, Alexander (2023-03)Hierarchical conservation and management of Indiana bat (Myotis sodalis) habitat may benefit from use of species distribution models. White-nose syndrome has caused additional declines for this endangered bat, requiring use of historical presence locations for habitat-related analyses. We created random forest presence/pseudo-absence models to assess the distribution and availability of Indiana bat habitat across the 670,000-ha Monongahela National Forest (MNF), West Virginia, USA. We collated historical roost and capture locations, both individually and in combination, to examine impacts of various biotic and abiotic predictors on roosting and foraging habitat of Indiana bats. Our final concordance map suggests that Indiana bat habitat was abundant (37.2% of the MNF) but localized, with predicted suitable areas often associated with edges of dry-calcareous forests. We observed significant variation between models, with the capture-only model independently identifying the greatest amount of potential habitat (47.8%). However, 21.9% of all potential Indiana bat habitat was identified by complete inter-model agreement. Our SDM outputs may assist land managers in identifying avoidance areas and new survey sites (i.e., capture and acoustic sampling) to support forest management activities.
- Distribution Probability of the Virginia Northern Flying Squirrel in the High Allegheny MountainsFord, W. Mark; Diggins, Corinne A.; De La Cruz, Jesse L.; Silvis, Alexander (2022-03)In the central Appalachians of Virginia and West Virginia, the Virginia northern flying squirrel (Glaucomys sabrinus fuscus; VNFS) is a subspecies of northern flying squirrel generally associated with red spruce (Picea rubens)-dominated forests at high elevations. Listed as endangered by the U.S. Fish and Wildlife Service from 1985 to 2013, the VNFS currently is the subject of a 10-year post-delisting assessment. Still considered a state-listed species in Virginia and a species of greatest conservation need in West Virginia, the VNFS serves as a focal target for red spruce restoration activities in the High Allegheny Region (HAR) of the two states. Owing to the cryptic nature of VNFS and its low detection probability in live-capture surveys, managers in the region rely on habitat models to assess probable presence. Using long-term nest-box, live-trapping, and radio-telemetry data matched with updated high elevation forest-type coverage data for the region, we created a new VNFS resource selection function and spatial coverage map. Inputting red spruce cover, increasing elevation, and decreasing landform index (increasing site shelteredness) composed the best model explaining VNFS occurrence. The calculated amount of low-quality habitat was congruent with previous modeling efforts; however, inclusion of more VNFS occurrence records in the current effort indicated that previous efforts substantially underestimated the amount (>400%) of extant high quality VNFS habitat. We estimate the HAR to contain approximately 197,952 ha with ≥0.50 predicted probability of occurrence of VNFS. In addition to potentially improving current and future VNFS live-capture surveys, with this model managers may better target forests for red spruce restoration to increase high elevation forest ecological integrity and to improve habitat patch connectedness for VNFS.
- Drought but not population density influences dietary niche breadth in white-tailed deer in a semiarid environmentFolks, Donald J.; Gann, Kory; Fulbright, Timothy E.; Hewitt, David G.; DeYoung, Charles A.; Wester, David B.; Echols, Kim N.; Draeger, Don A. (Ecological Society of America, 2014-12)A premise in ungulate foraging theory is that animals become less selective and expand the breadth of their dietary niche as the availability of palatable forage declines with increasing herbivore population density or drought. Increased niche variation resulting from intraspecific competition is thought to create less similar diet composition and decreased diet overlap between individuals within a population at higher densities than between individuals within less dense populations. These ideas were largely developed in relatively mesic environments and their applicability to ungulate foraging in semiarid environments is unclear. We tested the idea that white-tailed deer (Odocoileus virginianus) contract dietary niche breadth; reduce dietary plant species diversity, richness, and evenness; and become more individualistic in forage choices in response to a fourfold difference in population density (12 deer/km(2) versus 50 deer/km(2)) in semiarid shrubland in Texas, USA. We used the bite count method to determine diet composition of tame female white-tailed deer seasonally during summer 2009 to spring 2011. We were able to determine impacts of drought on foraging dynamics a posteriori because sampling during each season fortuitously occurred under both drought and non-drought conditions. Population density did not affect diet richness, diversity, breadth, evenness, overlap, and similarity. Diet richness, diversity, breadth, and evenness tended to be greater in non-drought conditions. For white-tailed deer, the idea that dietary niches expand in response to increasing population density is not robust across environments. In semiarid environments, variation in precipitation has a much stronger influence on dietary niche breath and intraspecific diet overlap of deer than population density does.
- Evaluating Temporal Differences in Land Cover: Implications for Managing Bobwhite at the Landscape Scale in VirginiaKlopfer, Scott D.; McGuckin, Kevin; Cross, Daniel (Virginia Tech, 2014)
- Exploring the relevance of the multidimensionality of wildlife recreationists to conservation behaviors: A case study in VirginiaGrooms, Bennett; Dayer, Ashley A.; Barnes, Jessica C.; Peele, Ashley; Rutter, Jonathan D.; Cole, Nicholas W. (Wiley, 2023-04-20)Wildlife recreationists' participation in conservation behaviors could provide key support to the conservation efforts of state fish and wildlife agencies. However, little is known about how identifying with multiple forms of wildlife recreation (i.e., hunters, anglers, birders, wildlife viewers) may influence participation in conservation behaviors, specifically for supporting state fish and wildlife agencies and their conservation goals. Using a mixed-mode survey of Virginia wildlife recreationists, we explored the hypothesized relationship between individuals' participation in conservation behaviors and their identification with multiple forms of consumptive and nonconsumptive wildlife recreation. We found wildlife recreation identity is multidimensional, with many individuals identifying with consumptive and nonconsumptive identities simultaneously. Further, consumptive-only recreationists (i.e., hunters and/or anglers) participated in conservation behaviors less often than nonconsumptive-only recreationists (i.e., birders and/or wildlife viewers) and recreationists with both consumptive and nonconsumptive identities were less likely to support a state fish and wildlife agency in the future. Our findings underscore the importance of all types of wildlife recreationists, especially those with intersecting identities, as state fish and wildlife agencies work to advance conservation. Hence, developing multi-faceted engagement strategies may enhance support for state fish and wildlife agencies among their growing wildlife recreation constituency.
- Final Report of the NPS Vegetation Mapping Project at Fire Island National SeashoreKlopfer, Scott D.; Olivero, Adele; Sneddon, Lesley; Lundgren, Julie (Virginia Tech, 2002-04)
- Final Report: Establishing a Regional Initiative for Biomass Energy Development for Early-Succession SGCN in the NortheastKlopfer, Scott D. (Virginia Tech, 2010)
- Final Report: Land Cover Characterization and Change in the Hunting Creek Pilot Watershed for the Period 1973-1991Klopfer, Scott D.; Lee, Daniel (Virginia Tech, 2003-03-11)
- Final Report: Nest Predator Habitat Use and an Evaluation of Survey Techniques at the Radford Army Ammunition PlantConvery, Ken; Klopfer, Scott D. (Virginia Tech, 2003-12-17)
- Final Report: Vegetation Map for Brookhaven National LabsKlopfer, Scott D.; Emrick, Verl III (Virginia Tech, 2002-01)
- Freshwater Mussel Assessment in the Upper Nottoway River and its Tributaries on Fort Pickett, VirginiaCarey, Caitlin; Wolf, Eric; Emrick, Verl III (2014-09)The upper reaches of the Nottoway River and its tributaries on Fort Pickett, Virginia are located within one of the most diverse river basins of the Atlantic Slope region. Freshwater mussels are vital components of these aquatic ecosystems and are often referred to as ecosystem engineers. Mussel surveys on Fort Pickett have historically concentrated on the central reaches of the Nottoway below the reservoir. Thus, assessments in tributaries and sites above the reservoir were needed. We evaluated a total of 68 sites across Fort Pickett and implemented a two-phase sampling design using time-constrained and quadrat-based surveys at a sub-set of these sites. We documented a total of 9 mussel species, including the state threatened Atlantic pigtoe and state species of concern eastern lampmussel. We found that mussels were patchily distributed and densities and species richness varied greatly between sites. Generally, species richness was lower and densities were higher in the tributaries compared to the main-stem of the Nottoway. Our findings of local mussel populations in the tributaries suggest that these areas may serve as spatial refugia for populations of several species. We found little evidence of recent recruitment across species, even at sites with high densities, indicating the need for water-quality testing and host fish surveys to identify management actions needed to support long-term population viability across species. Riparian and habitat protection should extend to the tributaries as well as to the main-stem of the Nottoway. Furthermore, we recommend additional surveys above the reservoir and in the Controlled Access Area, routine monitoring for Atlantic pigtoe and eastern lampmussel, as well as water quality assessments.
- «
- 1 (current)
- 2
- 3
- »