VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Theses and Dissertations (VTTI)

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 12 of 12
  • Attentional demand evaluation for an automobile moving-map navigation system
    Dingus, Thomas A. (Virginia Tech, 1987)
    A study was undertaken to test and evaluate the human factors design aspects of an automobile moving-map navigation system. The primary objective of the study was to assess the driver attentional demand required by the navigation system during vehicle operation. A secondary objective of the study was to assess design specifics and determine whether or not the design was optimal in terms of efficiency of use in an automotive environment. Thirty-two driver-subjects drove a specially instrumented 1985 Cadillac Sedan de Ville on public roadways for this research. A cross-section of driver-subjects (both genders, ages 18 to 73, and driving experience from 2,000 to 40,000 miles per year) participated, and a cross·section of roadway types (residential, two-lane state route, and limited·access four-lane) and traffic conditions (light and moderate) were used as part of this research. The driver-subjects were asked to perform a variety of tasks while operating the research vehicle. These tasks included navigation tasks normally performed while using the navigation system, as well as a wide variety of conventional automotive tasks (e.g., tuning the radio or reading the speedometer) normally performed during vehicle operation. The purpose of asking the driver-subjects to perform a variety of conventional automotive tasks was so that direct comparisons in attentional demand could be made between tasks performed daily in an automotive environment and the navigation tasks. Twenty-one performance and behavioral measures were collected and analyzed for this research. These measures included eye—scanning and dwell-time measures, task-completion-time measures, and a variety of measures indicating driver performance and behavior. The data analyses for these measures focused on two major goals. First, the analyses determined which tasks (both navigator and conventional) required the highest attentional demand. Second, the analyses were used to determine groups of tasks which, for all practical purposes, required equivalent attentional demand. The results of the analyses indicated that the navigation system is a relatively effective device, useful for its intended purpose. The results also indicated that a number of design improvements are required, however, to optimize the safety and efficiency of the device. An iterative process of design improvement and further research into the effects of improved design on required attentional demand is therefore recommended.
  • Assessment of Vehicle-to-Vehicle Communication based Applications in an Urban Network
    Kim, Taehyoung (Virginia Tech, 2015-06-23)
    Connected Vehicle research has emerged as one of the highest priorities in the transportation systems because connected vehicle technology has the potential to improve safety, mobility, and environment for the current transportation systems. Various connected vehicle based applications have been identified and evaluated through various measurements to assess the performance of connected vehicle applications. However, most of these previous studies have used hypothetical study areas with simple networks for connected vehicle environment. This study represents connected vehicle environment in TRANSIMS to assess the performance of V2V communication applications in the realistic urban network. The communication duration rate and spatial-temporal dispersion of equipped vehicles are investigated to evaluate the capability of V2V communication based on the market penetration rate of equipped vehicles and wireless communication coverage in the whole study area. The area coverage level is used to assess the spatial-temporal dispersion of equipped vehicles for two study areas. The distance of incident information propagation and speed estimation error are used to measure the performance of event-driven and periodic applications based on different market penetration rates of equipped vehicles and wireless communication coverage in both morning peak and non-peak times. The wireless communication coverage is the major factor for event-driven application and the market penetration rate of equipped vehicles has more impact on the performance of periodic application. The required minimum levels of deployment for each application are determined for each scenario. These study findings will be useful for making decisions about investments on deployment of connected vehicle applications to improve the current transportation systems. Notably, event-driven applications can be reliably deployed in the initial stage of deployment despite the low level of market penetration of equipped vehicles.
  • Development of models for detection of automobile driver impairment
    Dingus, Thomas A. (Virginia Tech, 1985-08-05)
    Two of the leading causes of automobile accidents are driver impairment due to alcohol and drowsiness. Apparently, a relatively large percentage of these accidents occur because drivers are unaware of the degree to which they are impaired due to these sources. The purpose of this research was to develop models which could detect driver impairment due to alcohol, drowsiness, or the combination of alcohol and drowsiness, and which could be practically implemented in an automobile. Such detection models, if successfully implemented in conjunction with a system to warn an impaired driver of his or her condition, could potentially save hundreds of lives each year. Six driver-subjects operated a computer controlled driving simulator during each of four conditions. The four conditions consisted of a control condition, an alcohol condition, a sleep-deprived condition, and a combination alcohol and sleep-deprived condition. Moderate levels of alcohol and sleep deprivation were used for this study. Nineteen performance and behavioral measures were collected during this study. Each measure was evaluated singly and in combination with other measures to determine potential value for detection of driver impairment. Detection models were then formulated using the most promising detection measures. The results indicated that a useful on-board drowsiness impairment detection device is possible and practical for highway driving. This device would also, in all likelihood, provide useful detection information regardless of whether low to moderate amounts of alcohol were present in a drowsy driver. The results also showed that on-board alcohol impairment detection may be possible at moderate to high BAC.
  • Effects of In-Vehicle Information Systems (IVIS) Tasks on the Information Processing Demands of a Commercial Vehicle Operations (CVO) Driver
    Blanco, Myra (Virginia Tech, 1999-12-10)
    This study was performed with two main goals in mind. The first goal was to understand and predict "red-lines" and "yellow-lines" in terms of what the CVO driver can process without hindering the primary task of driving. The second goal was to collect conventional secondary task data for CVO driving performance. An on-the-road experiment was performed with the help of 12 truck drivers. Type of task, presentation format, information density, and age were the independent variables used in the experiment. The 22 dependent measures collected were grouped into the following categories: eye glance measures, longitudinal driving performance, lateral driving performance, secondary task performance, and subjective assessment. The findings of this study strongly suggest that paragraphs should not be used under any circumstance to present information to the driver while the vehicle is in motion. On the other hand, the Graphics with Icons represent the most appropriate format in which driving instructions and information should be presented for IVIS/CVO tasks. In order to avoid a high visual attention demand to the driver due to a secondary task, only simple search tasks with the most important information shall be presented. Although the suggested format, type of task, and information density represent a higher visual attention demand than a conventional secondary task, these characteristics seem to bind a task with a moderate attentional demand. Other combinations of format, type of task, and information density will cause an increase in the driver's attentional demand that will consequently deteriorate their driving performance causing unsafe driving situations.
  • Application of Magnetorheological Dampers for Vehicle Seat Suspensions
    Reichert, Brian Anthony Jr. (Virginia Tech, 1997-12-03)
    This study evaluates and provides solutions to the problem of poor subjective feel of seat suspensions that employ magnetorheological (MR) dampers and skyhook control. An Isringhausen seat suspension that had been modified to replace the stock passive damper with a controllable MR damper was used to evaluate the problems and potential solutions. A seat suspension tester was built using materials from 80/20 Incorporated and a hydraulic actuation system from MTS. An HP Dynamic Signal Analyzer was used as the main piece of data acquisition equipment, along with a Pentium PC and National Instruments Data Acquisition card. All of the hardware is installed in a controlled laboratory facility at Virginia Tech's Advanced Vehicle Dynamics Lab. The first task was to analyze the source of the unexpected peak in the acceleration spectrum of the suspended seat. This analysis was accomplished using a combination of pure tone inputs and a Fourier analysis of a simple model of the system. This analysis indicated that the peak is actually three times the resonant frequency of the seat suspension. The analysis also indicates that the frequency components continue at odd multiples of the resonant frequency, however, the third peak is the most noticeable. The third multiple is in the resonant frequency range (4-8 Hz) of the human body, so it was initially blamed for the poor subjective feel of the seat. However, solutions to remove this harmonic were tested without success. The work progressed to a time domain analysis, which eventually led to determining the source of the poor subjective feel. The seat suspension was excited with a variety of inputs. The seat acceleration and damper control current were examined in the time domain to show that the cause of the poor subjective feel is the control signal discontinuities. The control policy was modified to remove the control signal discontinuities and was found to improve the subjective feel of the seat. Finally, several two-degree-of-freedom control policies were implemented and tested. Although the results from this testing are inconclusive, they generated several recommendations for future research.
  • Truck Modeling Along Grade Sections
    Lucic, Ivana (Virginia Tech, 2001-05-11)
    This research effort first characterizes the trucks traveling along US highways by analyzing data from Interstate 81. It is hypothesized that I-81 is typical of US highways and thus can provide some insight into typical truck characteristics. These truck characteristics are important for the development of an exhaustive vehicle performance procedure. Analysis was done based on data collected at the Troutville weigh station. The characterization involves an analysis of vehicle class distribution, GVW (Gross Vehicle Weight) distribution, vehicle volume distribution, Average Weight on Tractive Axle (AWTA), and typical weight-to-power ratios. The thesis then assembles a database of systematic field data that can be utilized for the validation of vehicle performance models. This database is unique because it was conducted in a controlled field environment where the vehicle is only constrained by its dynamics. Using the assembled field database, a simple constant power vehicle dynamics model for estimating maximum vehicle acceleration levels based on a vehicle's tractive effort and aerodynamic, rolling, and grade resistance forces was tested and validated. In addition, typical model input parameters for different vehicle, pavement, and tire characteristics are included in the thesis. The model was found to predict vehicle speeds at the conclusion of the travel along the section to within 5 km/h (3.1 mi/h) of field measurements, thus demonstrating the validity and applicability of the model. Finally, the research effort introduces the concept of variable power in order to enhance current state-of-the-art vehicle dynamics models and capture the build-up of power as a vehicle engages in gearshifts at low travel speeds. The proposed enhancement to the current state-of-practice vehicle dynamics model allows the model to reflect typical vehicle acceleration behavior more accurately. Subsequently, the model parameters are calibrated using field measurements along a test roadway facility.
  • A Comparison of CORSIM and INTEGRATION for the Modeling of Stationary Bottlenecks
    Crowther, Brent C. (Virginia Tech, 2001-05-09)
    Though comparisons of simulation models have been conducted, few investigations have examined in detail the logical differences between models. If the output measures of effectiveness are to be interpreted correctly, it is important that the analyst understand some of the underlying logic and assumptions upon which the results are based. An understanding of model logic and its inherent effect on the results will aid the transportation analyst in the application and calibration of a simulation model. In this thesis, the car-following behavior of the CORSIM and INTEGRATION simulation models are examined in significant detail, and its impact on output results explained. In addition, the thesis presents a calibration procedure for the CORSIM sub-model, FRESIM. Currently, FRESIM is calibrated by ad hoc trial-and-error, or by utilizing empirically developed cross-referencing tables. The literature reveals that the relationship between the microscopic input parameters of the CORSIM model, and the macroscopic parameters of capacity is not understood. The thesis addresses this concern. Finally, the thesis compares the INTEGRATION and CORSIM models in freeway and urban environments. The comparison is unique in that the simulated networks were configured such that differences in results could be identified, isolated, and explained. Additionally, the simplified nature of the test networks allowed for the formulation of analytical solutions. The thesis begins by relating steady-state car-following behavior to macroscopic traffic stream models. This is done so that a calibration procedure for the FRESIM (Pipes) car-following model could be developed. The proposed calibration procedure offers an avenue to calibrate microscopic car-following behavior using macroscopic field measurements that can be easily obtained from loop detectors. The calibration procedure, while it does not overcome the inherent shortcomings of the Pipes model, does provide an opportunity to better calibrate the network FRESIM car-following sensitivity factor to existing roadway conditions. The thesis then reports an observed inconsistency in the link-specific car-following sensitivity factor of the FRESIM model. Because calibration of a network on a link-specific basis is key to an accurate network representation, a correction factor was developed that should be applied to the analytically calculated link-specific car-following sensitivity factor. The application of the correction factor resulted in observed saturation flow rates that were within 5% of the desired saturation flow rates. The thesis concludes with a comparison of the CORSIM and INTEGRATION models for transient conditions. As a result of the various intricacies and subtleties that are involved in transient behavior, the comparisons were conducted by running the models on simple networks where analytical solutions to the problem could be formulated. In urban environments, it was observed that the models are consistent in estimates of delay and travel time, and inconsistent in estimates of vehicle stops, stopped delay, fuel consumption, and emissions. Specifically, it was observed that the NETSIM model underestimates the number of vehicle stops in comparison with INTEGRATION and the analytical formulation. It was also observed that the NETSIM vehicles speed and acceleration profiles are characterized by abrupt accelerations and decelerations. These abrupt movements significantly impact stopped time delay and vehicle emissions estimates. Inconsistencies in emissions estimates can also be attributed to differences in the embedded rate tables of each model. In freeway environments for under-saturated conditions, INTEGRATION returned higher values of travel time and delay, and lower values of average speed than the FRESIM model. These results are consistent with the analytical solution, and can be attributed to the speed-flow relationship of each model. In saturated conditions, when the capacity of the bottleneck is equal to the demand volume, the emergent vehicle behavior of the FRESIM model was observed to be inconsistent with the analytical solution. The FRESIM vehicles were observed to dramatically decelerate upon entering a lower-capacity link. This deceleration behavior led to higher travel time and delay time estimates in FRESIM than in INTEGRATION. In over-saturated conditions, longer queue lengths were observed in FRESIM than in INTEGRATION, resulting in slightly higher travel and delay estimates in the FRESIM model. The reason for the discrepancy in queue lengths is unclear, as the network jam density in each model was equivalent.
  • Evaluation of Service Reliability Impacts of Traffic Signal Priority Strategies for Bus Transit
    Chang, James (Virginia Tech, 2002-06-03)
    Recent progress in technology has facilitated the design, testing, and deployment of traffic signal priority strategies for transit buses. However, a clear consensus has not emerged regarding the evaluation of these strategies. Each agency implementing these strategies can have differing goals, and there are often conflicting issues, needs, and concerns among the various stakeholders. This research attempts to assist in the evaluation of such strategies by presenting an evaluation framework and plan that provides a systematic method to assess potential impacts. The results of the research include the development of specific measures corresponding to particular objectives, with descriptions to facilitate their use by agencies evaluating traffic signal priority. The use of this framework and plan is illustrated on the Columbia Pike corridor in Arlington, Virginia with the use of the INTEGRATION simulation package. In building upon prior efforts on this corridor, this work presents a method of simulating conditional granting of priority to late buses in an attempt to investigate the impacts of priority on service reliability. Using the measures developed in this research, statistically significant improvements of 3.2% were found for bus service reliability and 0.9% for bus efficiency, while negative other traffic-related impacts were found in the form of increases in overall delay to the corridor of 1.0% on a vehicle basis or 0.6% on a person basis. Areas identified for future research include extensions to INTEGRATION to permit consideration of real-time conditional priority, further exploration of the relationship between components of bus travel times, and examination of the role of passenger loads on priority operation and impacts.
  • Non-contact Methods for Detecting Hot-mix Asphalt Nonuniformity
    de León Izeppi, Edgar (Virginia Tech, 2006-09-21)
    Segregation, or non-uniformity, in Hot Mix Asphalt (HMA) induces accelerated pavement distress(es) that can reduce a pavement's service life up to 50%. Quality Assurance procedures should detect and quantify the presence of this problem in newly constructed pavements. Current practices are usually based on visual inspections that identify non-uniform surface texture areas. An automatic process that reduces subjectivity would improve the quality-assurance procedures of HMA pavements. Virginia has undertaken a focused research effort to improve the uniformity of hot-mix asphalt (HMA) pavements. A method using a dynamic (laser-based) surface macrotexture instrument showed great promise, but it revealed that it may actually miss significant segregated areas because they only measure very thin longitudinal lines. The main objective of this research is to develop a non-contact system for the detection of segregated HMA areas and for the identification of the locations of these areas along a road for HMA quality assurance purposes. The developed system uses relatively low cost components and innovative image processing and analysis software. It computes the gray level co-occurrence matrix (GLCM) of images of newly constructed pavements to find various parameters that are commonly used in visual texture analysis. Using principal component analysis to integrate multivariable data into a single classifier, Hotelling's T2 statistic, the system then creates a list of the location of possible nonuniformities that require closer inspection. Field evaluations of the system at the Virginia Smart Road proved that it is capable of discriminating between different pavement surfaces. Verification of the system was conducted through a series of field tests to evaluate the uniformity of newly constructed pavements. A total of 18 continuous road segments of recently paved roads were tested and analyzed with the system. Tables and plots to be used by inspection personnel in the field were developed. The results of these field tests confirmed the capability of the system to detect potential nonuniformities of recently completed pavements. The system proved its potential as a useful tool in the final inspection process.
  • The Impact of Local/Short Haul Operations on Driver Fatigue
    Hanowski, Richard J. (Virginia Tech, 2000-05-23)
    Massie, Blower, and Campbell (1997) indicate that trucks that operate less than 50 miles from the vehicle's home base comprise 58% of the trucking industry. However, despite being the largest segment, research involving local/short haul (L/SH) operations has been scant. In fact, little is known about the general safety issues in L/SH operations. As a precursor to the present research, Hanowski, Wierwille, Gellatly, Early, and Dingus (1998) conducted a series of focus groups in which L/SH drivers provided their perspective on safety issues, including fatigue, in their industry. As a follow-up to the Hanowski et al. work, the effort presented here consisted of an on-road field study where L/SH trucks were instrumented with data collection equipment. Two L/SH trucking companies and 42 L/SH drivers participated in this research. To the author's knowledge, this is the first in-situ data collection effort of its kind with L/SH drivers. The analyses focused on determining if fatigue is an issue in L/SH operations. Of primary interest were critical incidents (near-crashes) where drivers were judged to be at fault. The results of the analyses indicated that fatigue was present immediately prior to driver involvement in at-fault critical incidents. Though it is difficult to determine why fatigue was present, the results seem to indicate that much of the fatigue that the drivers' experienced was brought with them to the job, rather than being caused by the job. There are four basic outputs of the Phase II research: (1) a description of the L/SH drivers who participated, (2) a description of critical incidents, (3) a determination if fatigue is an issue in L/SH trucking, and (4) the validation of the fatigue factors cited in Hanowski et al. (1998) using a proposed fatigue model. These four outputs culminate in a set of pragmatic guidelines to address fatigue and other safety issues in L/SH operations. Five guidelines are proposed that are directed at: (1) driver education with regard to on-the-job drowsiness/inattention, (2) driver education with regard to sleep hygiene, (3) driver training, particularly for novice L/SH truck drivers, (4) driver screening, and (5) public monitoring of L/SH driver performance.
  • Deploying an ITS Warning System for No-Passing Zones on Two-Lane Rural Roads
    El Zarif, Jamal A. (Virginia Tech, 2001-06-28)
    A new safety application, as part of ITS Advanced Rural Transportation System (ARTS), has been developed to be deployed on a two-lane rural road (Route 114), in Southwest Virginia. The route segment under study is subject to significant head-on accidents, as a result of two main conditions: 1- Illegal passing maneuvers crossing solid yellow line, and 2- A short passing sight distance due to the road vertical profile. The main objective of this research is to design a video detection-based warning system by installing an affordable and efficient system on the vertical crest curve on Route 114, capable of performing the following two main functions: 1.Detect vehicles that attempt to violate the no-passing zone restriction (i.e. when crossing into the opposing direction). 2.Warn the drivers violating the restriction in order to discourage them from continuing their maneuvers. System architecture as well as detailed system design was developed. A system simulation was conducted with the use of a special software program written with MATLAB. The simulation was applied for both "with" and "without" the system cases. The simulation runs showed that the system could virtually eliminate all head-on collisions, should violators obey the early warning messages displayed. Several sensitivity tests were made for different scenarios. Finally, the viability of the system was evaluated from economic point of view. The financial analysis revealed high economic indicators.
  • On-line Traffic Signalization using Robust Feedback Control
    Yu, Tungsheng (Virginia Tech, 1997-12-18)
    The traffic signal affects the life of virtually everyone every day. The effectiveness of signal systems can reduce the incidence of delays, stops, fuel consumption, emission of pollutants, and accidents. The problems related to rapid growth in traffic congestion call for more effective traffic signalization using robust feedback control methodology. Online traffic-responsive signalization is based on real-time traffic conditions and selects cycle, split, phase, and offset for the intersection according to detector data. A robust traffic feedback control begins with assembling traffic demands, traffic facility supply, and feedback control law for the existing traffic operating environment. This information serves the input to the traffic control process which in turn provides an output in terms of the desired performance under varying conditions. Traffic signalization belongs to a class of hybrid systems since the differential equations model the continuous behavior of the traffic flow dynamics and finite-state machines model the discrete state changes of the controller. A complicating aspect, due to the state-space constraint that queue lengths are necessarily nonnegative, is that the continuous-time system dynamics is actually the projection of a smooth system of ordinary differential equations. This also leads to discontinuities in the boundary dynamics of a sort common in queueing problems. The project is concerned with the design of a feedback controller to minimize accumulated queue lengths in the presence of unknown inflow disturbances at an isolated intersection and a traffic network with some signalized intersections. A dynamical system has finite L₂-gain if it is dissipative in some sense. Therefore, the Hinfinity-control problem turns to designing a controller such that the resulting closed loop system is dissipative, and correspondingly there exists a storage function. The major contributions of this thesis include 1) to propose state space models for both isolated multi-phase intersections and a class of queueing networks; 2) to formulate Hinfinity problems for the control systems with persistent disturbances; 3) to present the projection dynamics aspects of the problem to account for the constraints on the state variables; 4) formally to study this problem as a hybrid system; 5) to derive traffic-actuated feedback control laws for the multi-phase intersections. Though we have mathematically presented a robust feedback solution for the traffic signalization, there still remains some distance before the physical implementation. A robust adaptive control is an interesting research area for the future traffic signalization.