Scholarly Works, School of Plant and Environmental Sciences
Permanent URI for this collection
Browse
Recent Submissions
- ICPPB & Biocontrol 2024: Abstract book(Virginia Tech, 2024-07)The 15th International Conference on Plant Pathogenic Bacteria and the 5th International Symposium of Biological Control of Bacterial Plant Diseases was held as a combined conference at Virginia Tech in Blacksburg, VA, USA from July 7-12, 2024.
- Site Preparation and Planting Strategies to Improve Native Forb Establishment in PasturelandsBellangue, David; Barney, Jacob; Flessner, Michael; Kubesch, Jonathan; O’Rourke, Megan; Tracy, Benjamin; Reid, John Leighton (MDPI, 2024-11-14)Increasing the diversity of native forbs in pasturelands can benefit insect pollinator populations, which have been declining widely. Establishing native forbs into existing pasturelands can be challenging, however, and information about effective planting strategies in these systems is lacking. In this study, we evaluated several planting strategies to improve native forb establishment. Two field experiments were conducted in Virginia, USA in 2021 and 2022. Experiment 1 evaluated how six herbicide treatments and tillage affected establishment success when forbs were planted in summer or fall. Experiment 2 investigated how different seeding rates from 2.2 to 56 kg/ha and pre-seeding cold stratification affected forb establishment. In experiment 1, treatments using Roundup/glyphosate and tillage resulted in the most forb establishment. Planting in summer improved establishment with Roundup/glyphosate application. In experiment 2, native forb plant establishment was positively associated with seeding rate (p < 0.001), with a rate of 56 kg/ha resulting in almost 3x more forbs compared to the lowest seeding rate. Cold stratification also increased target plant establishment (p < 0.01), but these effects were inconsistent among species. Our results suggest that effective native forb establishment can be achieved through intensive site preparation with Roundup/glyphosate or tillage to suppress vegetation and planting at rates no higher than 11 kg/ha.
- Why Is Reducing the Dead Zone in the Gulf of Mexico Such a Complex Goal? Understanding the Structure That Drives Hypoxic Zone Formation via System DynamicsMier-Valderrama, Luis; Ledezma, Jorge; Gibson, Karl; Anoruo, Ambrose; Turner, Benjamin (MDPI, 2024-08-26)The Northern Gulf of Mexico hosts a severe dead zone, an oxygen-depleted area spanning 1,618,000 hectares, threatening over 40% of the U.S. fishing industry and causing annual losses of USD 82 million. Using a System Dynamics (SD) approach, this study examined the Mississippi–Atchafalaya River Basin (MARB), a major contributor to hypoxia in the Gulf. A dynamic model, developed with Vensim software version 10.2.1 andexisting data, represented the physical, biological, and chemical processes leading to eutrophication and simulated dead zone formation over time. Various policies were assessed, considering natural system variability. The findings showed that focusing solely on nitrogen control reduced the dead zone but required greater intensity or managing other inputs to meet environmental goals. Runoff control policies delayed nutrient discharge but did not significantly alter long-term outcomes. Extreme condition tests highlighted the critical role of runoff dynamics, dependent on nitrogen load relative to flow volume from upstream. The model suggests interventions should not just reduce eutrophication inputs but enhance factors slowing down the process, allowing natural denitrification to override anthropogenic nitrification.
- Response of the Edamame Germplasm to Early-Season Diseases in the United StatesLi, Xiaoying; Zaia, Rafael; Liu, Kathryn; Xu, Xueming; Silva, Marcos Da; Rojas, Alejandro; Welbaum, Gregory E.; Zhang, Bo; Rideout, Steven (MDPI, 2024-07-29)Edamame (Glycine max (L.) Merr.) is a specialty soybean newly grown in the United States that has become the second most widely consumed soy food (25,000–30,000 tons annually). Poor crop establishment caused by soilborne diseases is a major problem limiting edamame production in the U.S. This study investigated 24 edamame cultivars/lines to determine their response to three soilborne pathogens causing seed rot and seedling damping off, including Rhizoctonia solani, Sclerotium rolfsii, Pythium irregulare, and Xanthomonas campestris pv. glycines, a seedborne pathogen that caused severe outbreaks of bacterial leaf pustules in mid-Atlantic regions in 2021. The hypothesis was that resistant variations existed among the genotypes, which could be used for production and future breeding efforts. The results reveal that all genotypes were affected, but partially resistant varieties could be clearly recognized by a significantly lower disease index (p < 0.05), and no genotype was resistant to all four diseases. Newly developed breeding lines showed overall higher disease resistance than commercial cultivars, particularly to R. solani and P. irregulare. This study found genetic variability in edamame, which can be helpful in breeding for resistance or tolerance to early-season diseases. The result will promote domestic edamame production and further strengthen and diversify agricultural economies in the U.S.
- Uptake and Economic Value of Macro- and Micronutrient Minerals in Wheat ResidueAdams, Curtis B.; Rogers, Christopher W.; Marshall, Juliet M.; Hatzenbuehler, Patrick; Walsh, Olga S.; Thurgood, Garrett; Dari, Biswanath; Loomis, Grant; Tarkalson, David D. (MDPI, 2024-08-15)Wheat (Triticum aestivum, L.) producers have the choice to retain or remove residue from the cropping system following grain harvest. In the U.S. Pacific Northwest and other regions, wheat residue is often sold to increase operational profitability, especially from higher-yielding systems. But there are several benefits to retaining residue, including recycling of mineral nutrients contained therein, though this is understudied. Therefore, the primary objectives of this research were to collect and analyze a large and diverse dataset on wheat residue nutrient uptake (N, P, K, Ca, Mg, S, Fe, Zn, Mn, Cu), develop tools to estimate nutrient amounts in residue, and make economic estimates of the fertilizer replacement value of those nutrients. This was accomplished by conducting replicated variety trials on five classes of wheat across many Pacific Northwest sites over two years, then collecting and analyzing data on wheat residue biomass, residue nutrient concentrations, and grain yield. The results showed that wheat residue contained a significant amount of nutrients, but was particularly concentrated in K. Production environment had the most substantial effect on residue mineral uptake amounts, due to site differences in yield and soil nutrient availability. To enable simple estimation of residue nutrient uptake across a broad range of wheat production levels, two estimation tools are presented herein. Economic analysis showed the substantial monetary value of residual nutrients. For example, in a high-yielding wheat crop (9 Mg ha−1), the average fertilizer replacement value of just residue N, P, K, and S was similar to the entire fertilizer budget to grow the crop (~$211 vs. $205 ha−1), not considering micronutrients in the residue or any nutrients removed through grain harvest. In making residue management decisions, wheat producers should consider the tradeoff between the immediate economic gains of residue sale and the multifaceted benefits of residue retention, including savings on future nutrient costs.
- Silvopastures: Benefits, Past Efforts, Challenges, and Future Prospects in the United StatesPoudel, Sanjok; Pent, Gabriel J.; Fike, John H. (MDPI, 2024-06-26)The global human population is projected to reach 9.7 billion by 2050, increasing the demand for food and fiber, but also raising concerns about the environmental impact of agricultural production scaled to meet their needs. Silvopastures—integrated tree–forage–livestock systems—have emerged as a viable practice to meet the required productivity and environmental stewardship outcomes. This review consolidates the extensive research on silvopasture practices in the United States and highlights the benefits of these systems. A comprehensive literature search across databases such as ScienceDirect and Google Scholar revealed 152 publications on silvopastures in the United States since 2000, indicating growing interest. These studies have primarily focused on the impacts of silvopastures on livestock welfare and productivity, forage production and composition, soil health and nutrient dynamics, and socio-economic factors. Geographical distribution analysis indicated that the research is more focused in the Southeastern United States, with Florida, Virginia, Alabama, Missouri, and Arkansas being the top five contributing states. The review also offers insights into the tree and forage species used across these states and discusses the challenges to silvopasture adoption among producers and land managers while exploring future prospects. This review may be used as a resource for understanding the multifaceted dimensions of silvopasture adoption, providing insights for researchers, policymakers, and practitioners alike.
- Implementing Digital Multispectral 3D Scanning Technology for Rapid Assessment of Hemp (Cannabis sativa L.) Weed Competitive TraitsSingh, Gursewak; Slonecki, Tyler; Wadl, Philip; Flessner, Michael; Sosnoskie, Lynn; Hatterman-Valenti, Harlene; Gage, Karla; Cutulle, Matthew (MDPI, 2024-06-28)The economic significance of hemp (Cannabis sativa L.) as a source of grain, fiber, and flower is rising steadily. However, due to the lack of registered herbicides effective in hemp cultivation, growers have limited weed management options. Plant height, biomass, and canopy architecture may affect crop–weed competition. Greenhouse experiments conducted at the joint Clemson University Coastal Research and Education Center and USDA-ARS research facility at Charleston, SC, USA used 27 hemp varieties, grown under controlled temperature and light conditions. Weekly plant scans using a digital multispectral phenotyping system, integrated with machine learning algorithms of the PlantEye F500 instrument, (Phenospex, Heerlen, Netherlands) captured high-resolution 3D models and spectral data of the plants. Manual and scanner-based measurements were validated and analyzed using statistical methods to assess plant growth and morphology. This study included validation tests showing a significant correlation (p < 0.001) between digital and manual measurements (R2 = 0.89 for biomass, R2 = 0.94 for height), indicating high precision. The use of 3D multispectral scanning significantly reduces the time-intensive nature of manual measurements, allowing for a more efficient assessment of morphological traits. These findings suggest that digital phenotyping can enhance integrated weed management strategies and improve hemp crop productivity by facilitating the selection of competitive hemp varieties.
- Hemp Seed Yield Responses to Nitrogen Fertility RatesPodder, Swarup; Shafian, Sanaz; Thomason, Wade E.; Wilson, T. Bain; Fike, John H. (MDPI, 2024-04-11)Industrial hemp (Cannabis sativa L.) holds promise as a crop for more sustainable supply chains given its potential as a source of high-strength fibers, adsorbents, and nutrient-dense feedstuffs. Developing nutrient management guidelines for hemp will be an important part of optimizing the crop’s sustainability attributes. This study measured hemp seed yield in response to N fertilization rate (0, 60, 120, 180, and 240 kg N ha−1). Treatments were tested with four hemp cultivars (‘Joey’ and ‘Grandi’ in 2020, 2021, and 2022 and ‘NWG 2463’ and ‘NWG 4113’ in 2023) in Virginia. Nitrogen input influenced (p ≤ 0.0177) seed yield in all four experimental years, although the pattern of response varied substantially. In 2020, following delayed seeding, hemp showed a weak quadratic (p = 0.0113) response to N inputs, with peak yield (1640 kg ha−1) occurring with 120 kg N ha−1. In 2021, hemp displayed a strong linear (p < 0.0001) response to N inputs, with the highest seed yield (2510 kg ha−1) at 240 kg N ha−1. In 2022, a season characterized by low precipitation and high weed pressure, a weak, linear (p = 0.0111) response to the N rate was observed. The greatest seed yield (380 kg ha−1) was again observed with 240 kg N ha−1. In 2023, weed pressure remained an issue, but the response to N was strong and linear (p < 0.0001), with the greatest seed yield (831 kg ha−1) again measured at 240 kg N ha−1. These findings indicate hemp can be quite responsive to N inputs but that the magnitude of response is sensitive to other factors such as available soil moisture, weed pressure, and growing period.
- Silicon Improves Heat and Drought Stress Tolerance Associated with Antioxidant Enzyme Activity and Root Viability in Creeping Bentgrass (Agrostis stolonifera L.)Zhang, Xunzhong; Goatley, Mike; Wang, Kehua; Goddard, Ben; Harvey, Rose; Brown, Isabel; Kosiarski, Kelly (MDPI, 2024-05-30)Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season turfgrass species widely used for golf course putting greens; however, it experiences summer stress and quality decline in the U.S. transition zone and other regions with similar climates. Silicon (Si) may improve the abiotic stress of creeping bentgrass, but the mechanism of its impact on plant drought and heat tolerance is not well understood, and a few studies have reported on the effects of Si on creeping bentgrass drought and heat tolerance. The objectives of this study were to determine the effects of Ortho-silicic acid (Ortho-Si) on antioxidant metabolism and root growth characteristics and viability in creeping bentgrass under drought and heat-stress conditions. The three treatments, including control, Ortho-Si at 0.16 mL m−2 and 0.32 mL m−2, were applied biweekly to creeping bentgrass. Foliar application of the Ortho-Si exhibited beneficial effects on turf quality, physiological fitness, and root growth in creeping bentgrass. The Ortho-Si application at 0.16 mL m−2 and 0.32 mL m−2 improved turf quality ratings by 9.5% and 11.1%, respectively, photochemical efficiency (PE) by 6.9% and 8.5%, respectively, chlorophyll content by 27.1% and 29.9%, and carotenoids content by 25.5% and 27.2%, respectively, when compared to the control at the end of the trial. The Ortho-Si treatments enhanced antioxidant enzyme activity; the highest amount, in particular, increased superoxide dismutase (SOD) activity by 32.8%, catalase (CAT) by 12.8%, and ascorbate peroxidase (APX) activity by 37.4%, as compared to the control. The Ortho-Si application reduced leaf hydrogen peroxide (H2O2) concentration relative to the control. In addition, exogenous Ortho-Si improved leaf Si concentration. The Ortho-Si application at 0.32 mL m−2 increased root biomass by 52.7% and viability by 89.3% relative to the control. Overall, Ortho-Si at 0.32 mL m−2 had greater beneficial effects than the low rate (0.16 mL m−2). Exogenous Si may improve drought and heat tolerance by protecting photosynthetic function, enhancing the activities of leaf antioxidant enzymes, and stimulating root growth, viability, and Si uptake. The results of this study suggest that foliar application of Ortho-Si at 0.32 mL m−2 may be considered to be an effective approach to improve turf quality and physiological fitness of creeping bentgrass during the summer months in the U.S. transition zone and other regions with similar climates.
- Phenotypic Dissection of Drought Tolerance in Virginia and Carolinas within a Recombinant Inbred Line Population Involving a Spanish and a Virginia-Type Peanut LinesKumar, Naveen; Haak, David C.; Dunne, Jeffrey C.; Balota, Maria (MDPI, 2024-06-08)Peanut (Arachis hypogaea L.) is a rainfed crop grown in both tropical and subtropical agro-climatic regions of the world where drought causes around 20% yield losses per year. In the United States, annual losses caused by drought are around $50 million. The objective of this research was to (1) identify genetic variation for the normalized difference vegetation index (NDVI), canopy temperature depression (CTD), relative chlorophyll content by SPAD reading (SCMR), CO2 assimilation rate, and wilting among recombinant inbred lines (RILs) derived from two diverse parents N08086olJCT and ICGV 86015, to (2) determine if the physiological traits can be used for expediting selection for drought tolerance, and (3) experimental validation to identify lines with improved yield under water-limited conditions. Initially, 337 lines were phenotyped under rainfed production and a selected subset of 52 RILs were tested under rainout shelters, where drought was imposed for eight weeks during the midseason (July and August). We found that under induced drought, pod yield was negatively correlated with wilting and CTD, i.e., cooler canopy and high yield correlated positively with the NDVI and SPAD. These traits could be used to select genotypes with high yields under drought stress. RILs #73, #56, #60, and #31 performed better in terms of yield under both irrigated and drought conditions compared to check varieties Bailey, a popular high-yielding commercial cultivar, and GP-NC WS 17, a drought-tolerant germplasm.
- A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal HealthShea, Zachary; Ogando do Granja, Matheus; Fletcher, Elizabeth B.; Zheng, Yaojie; Bewick, Patrick; Wang, Zhibo; Singer, William M.; Zhang, Bo (MDPI, 2024-05-01)The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources—soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.
- Evaluating Different Methods to Establish Biodiverse Swards of Native Grasses and Wildflowers for PasturelandsKubesch, Jonathan O. C.; Greiner, Scott P.; Pent, Gabriel J.; Reid, J. Leighton; Tracy, Benjamin F. (MDPI, 2024-05-14)Many cool-season pastures in the southeastern U.S. are dominated by a competitive cool-season grass, tall fescue (Schedonorus arundinaceus), and lack substantial plant diversity. Planting native warm-season grasses (NWSGs) and wildflowers (WFs) into these pastures could provide summer forage for cattle and more floral resources for pollinators. This paper summarizes field experiments designed to evaluate different spatiotemporal planting arrangements of NWSGs and WFs to improve their establishment success. The study was conducted from April 2021 to October 2023 in central Virginia (USA). Planting treatments included NWSG and WF mixtures planted: (1) together in the same space, (2) spatially separated in space (i.e., side by side), or (3) temporally separated where NWSGs and WFs were planted in difference sequences. Results showed few differences in forage mass, floral production, and botanical composition as well as stand density in 2021 and 2022. In 2023, NWSG abundance was greater where grasses were planted first or mixed with WFs. Similarly, the WF component was favored when they were planted before NWSGs. Overall, planting NWSG and WF mixes separately, either spatially or temporally, favors successful establishment and could offer more flexibility for using selective herbicides to suppress the heavy weed pressure that often accompanies these plantings.
- Humic Acid Promotes the Growth of Switchgrass under Salt Stress by Improving Photosynthetic FunctionZhang, Jiaxing; Meng, Qiuxia; Yang, Zhiping; Zhang, Qiang; Yan, Min; Hou, Xiaochan; Zhang, Xunzhong (MDPI, 2024-05-19)As a potential crop in saline-alkali land, the growth of switchgrass could also be threatened by salt stress. Promoting the growth of switchgrass under salt stress by humic acid has great significance in the utilization of saline-alkali land. In this study, a pot experiment was arranged to investigate the responses of photosynthetic and physicochemical characteristics of switchgrass to HA under salt stress. Results showed that humic acid increased the photosynthetic function of switchgrass and enhanced plant height by 41.1% and dry weight by 26.9% under salt stress. Correlation analysis showed that the membrane aquaporin gene PvPIP1, malondialdehyde, ascorbate peroxidase, abscisic acid, polyamine, and jasmonic acid were important factors affecting the photosynthetic function of switchgrass in this study. Meanwhile, HA reduced the content of malondialdehyde, indicating the alleviation of the membrane damage caused by salt stress. On the other hand, HA upregulated the relative expression of the PvPIP1 gene and activated ascorbate peroxidase, abscisic acid, polyamine, and jasmonic acid in switchgrass to resist salt stress. These improved the membrane stability and promoted the photosynthetic activity of switchgrass to enhance the plant’s tolerance against salt stress and growth. Results from this study are helpful to the efficient growing of switchgrass and the sustainable development of saline-alkali land.
- MicroRNA164 Affects Plant Responses to UV Radiation in Perennial RyegrassXu, Chang; Huang, Xin; Ma, Ning; Liu, Yanrong; Xu, Aijiao; Zhang, Xunzhong; Li, Dayong; Li, Yue; Zhang, Wanjun; Wang, Kehua (MDPI, 2024-04-30)Increasing the ultraviolet radiation (UV) level, particularly UV-B due to damage to the stratospheric ozone layer by human activities, has huge negative effects on plant and animal metabolism. As a widely grown cool-season forage grass and turfgrass in the world, perennial ryegrass (Lolium perenne) is UV-B-sensitive. To study the effects of miR164, a highly conserved microRNA in plants, on perennial ryegrass under UV stress, both OsmiR164a overexpression (OE164) and target mimicry (MIM164) transgenic perennial ryegrass plants were generated using agrobacterium-mediated transformation, and UV-B treatment (~600 μw cm−2) of 7 days was imposed. Morphological and physiological analysis showed that the miR164 gene affected perennial ryegrass UV tolerance negatively, demonstrated by the more scorching leaves, higher leaf electrolyte leakage, and lower relative water content in OE164 than the WT and MIM164 plants after UV stress. The increased UV sensitivity could be partially due to the reduction in antioxidative capacity and the accumulation of anthocyanins. This study indicated the potential of targeting miR164 and/or its targeted genes for the genetic manipulation of UV responses in forage grasses/turfgrasses; further research to reveal the molecular mechanism underlying how miR164 affects plant UV responses is needed.
- A silent spring, or a new cacophony? Invasive plants as maestros of modern soundscapesBarney, Jacob N.; O'Malley, Grace; Ripa, Gabrielle N.; Drake, Joseph; Franusich, David; Mims, Meryl C. (Wiley, 2024-04-01)Sound plays a key role in ecosystem function and is a defining part of how humans experience nature. In the seminal book Silent Spring (Carson 1962), Rachel Carson warned of the ecological and environmental harm of pesticide usage by envisioning a future without birdsong. Soundscapes, or the acoustic patterns of a landscape through space and time, encompass both biological and physical processes (Pijanowski et al. 2011). Yet, they are often an underappreciated element of the natural world and the ways in which it is perceived. Scientists are only beginning to quantify changes to soundscapes, largely in response to anthropogenic sounds, but soundscape alteration is likely linked to many dimensions of global change. For example, invasive non-native species (hereafter, invasive species) are near-ubiquitous members of ecosystems globally and threaten both natural and managed ecosystems at great expense. Their impacts to soundscapes may be an important, yet largely unknown, threat to ecosystems and the human and economic systems they support.
- Effect of organic biostimulants on cannabis productivity and soil microbial activity under outdoor conditionsDa Cunha Leme Filho, Jose F.; Chim, Bee K.; Bermand, Cameron; Diatta, Andre A.; Thomason, Wade E. (2024-03-26)In 2019 and 2020, we investigated the individual and combined effects of two biofertilizers (manure tea and bioinoculant) and one humic acid (HA) product on cannabis biochemical and physiological parameters and soil CO2 evolution under outdoor conditions. Our hypothesis was that HA would increase the microbial activity in the biofertilizers and synergy of both compounds would promote better plant performance and stimulate soil microbial activity. In 2020, the individual and combined application of biofertilizers and HA increased cannabis height, chlorophyll content, photosynthetic efficiency, aboveground biomass, and bucked biomass by 105, 52, 43, 122, and 117%, respectively. Impacts were greater under suboptimal growing conditions caused by planting delay experienced in 2020. In 2019, planting date occurred in-between the most favorable period and chlorophyll content and photosynthetic efficiency were the only parameters influenced by the application of biostimulants. The discrepancies between the two growing seasons reinforce the evidence of other studies that biostimulants efficacy is maximized under stress conditions. This study could not conclusively confirm that the combined use of biofertilizer + HA is a superior practice since affected plant parameters did not differ from application of the compounds singly. Similarly, only one biofertilizer + HA treatment increased soil microbial activity. More research is needed to define optimum rates and combinations of biofertilizer and stimulants for cannabis.
- Incidence of Per-And Polyfluoroalkyl Substances (PFAS) in Private Drinking Water Supplies in Southwest Virginia, USAHohweiler, Kathleen; Krometis, Leigh-Anne H.; Ling, Erin; Xia, Kang (2024)Per- and polyfluoroalkyl substances (PFAS) are a class of man-made contaminants of increasing human health concern due to their resistance to degradation, widespread environmental occurrence, bioaccumulation in organ tissue, and potential negative health impacts. Private drinking water supplies may be uniquely vulnerable to PFAS contamination, as these systems are not subject to federal regulations and often include limited treatment prior to use. The goal of this study was to determine the incidence of PFAS contamination in private drinking water supplies in two counties in Southwest Virginia, USA (Floyd and Roanoke), and to examine the potential for reliance on citizen-science based strategies for sample collection in subsequent broader efforts. Samples for inorganic ions, bacteria, and PFAS analysis were collected on separate occasions by participants and experts at the home drinking water point of use (POU) for comparison. Experts also collected outside tap samples for PFAS analysis. At least one PFAS was detectable in 88% of POU samples collected (n=60), with an average total PFAS concentration of 23.5±30.8 ppt. PFOA and PFOS, two PFAS compounds which presently have EPA health advisories, were detectable in 13% and 22% of POU samples, respectively. Of the 31 compounds targeted, 15 were detectable in at least one sample. On average, each POU sample contained approximately 3.3 PFAS compounds, and one sample contained as many as 8 compounds, indicating that exposure to a mixture of PFAS in drinking water may be occurring. Although there were significant differences in total PFAS concentrations between expert and participant collected samples (Wilcoxon, alpha = 0.05), collector bias was inconsistent, and may be due to the time of day of sampling (i.e. morning, afternoon) or specific attributes of a given home. Future studies reliant on participant collection of samples appear possible given proper training, coordination, and instruction.
- Pasture Biomass Estimation Using Ultra-High-Resolution RGB UAVs Images and Deep LearningVahidi, Milad; Shafian, Sanaz; Thomas, Summer; Maguire, Rory O. (MDPI, 2023-12-13)The continuous assessment of grassland biomass during the growth season plays a vital role in making informed, location-specific management choices. The implementation of precision agriculture techniques can facilitate and enhance these decision-making processes. Nonetheless, precision agriculture depends on the availability of prompt and precise data pertaining to plant characteristics, necessitating both high spatial and temporal resolutions. Utilizing structural and spectral attributes extracted from low-cost sensors on unmanned aerial vehicles (UAVs) presents a promising non-invasive method to evaluate plant traits, including above-ground biomass and plant height. Therefore, the main objective was to develop an artificial neural network capable of estimating pasture biomass by using UAV RGB images and the canopy height models (CHM) during the growing season over three common types of paddocks: Rest, bale grazing, and sacrifice. Subsequently, this study first explored the variation of structural and color-related features derived from statistics of CHM and RGB image values under different levels of plant growth. Then, an ANN model was trained for accurate biomass volume estimation based on a rigorous assessment employing statistical criteria and ground observations. The model demonstrated a high level of precision, yielding a coefficient of determination (R2) of 0.94 and a root mean square error (RMSE) of 62 (g/m2). The evaluation underscores the critical role of ultra-high-resolution photogrammetric CHMs and red, green, and blue (RGB) values in capturing meaningful variations and enhancing the model’s accuracy across diverse paddock types, including bale grazing, rest, and sacrifice paddocks. Furthermore, the model’s sensitivity to areas with minimal or virtually absent biomass during the plant growth period is visually demonstrated in the generated maps. Notably, it effectively discerned low-biomass regions in bale grazing paddocks and areas with reduced biomass impact in sacrifice paddocks compared to other types. These findings highlight the model’s versatility in estimating biomass across a range of scenarios, making it well suited for deployment across various paddock types and environmental conditions.
- Quantitative texture analysis comparison of three legumesMiller, Rebekah; Duncan, Susan; Yin, Yun; Zhang, Bo; Lahne, Jacob (Frontiers, 2023-06-19)A validated texture-analysis method to evaluate product quality in frozen or cooked legumes is needed to support high-quality vegetable production but is not currently established in the literature. Peas, lima beans, and edamame were investigated in this study due to similar market use as well as growth in plant-based protein consumption in the United States. These three legumes were evaluated after three different processing treatments (blanch/freeze/thaw (BFT); BFT+microwave heat (BFT+M); BF+stove-top cooking (BF+C)), using both compression and puncture analysis following an American Society of Agricultural and Biological Engineers (ASABE) texture analysis method and moisture testing following an American Society for Testing and Materials (ASTM) standard method. Texture analysis results showed differences between legumes and processing methods. Compression analysis identified more differences between treatments within product type than puncture for both edamame and lima beans indicating compression might be more sensitive to texture changes in these products. Implementation of a standard texture method for legume vegetables for growers and producers would provide a consistent quality check to support efficient production of high-quality legumes. Due to the sensitivity obtained from the compression texture method in this work, compression should be considered for future research into a robust method to evaluate edamame and lima bean textures throughout the growing and production processes.
- Suggestions for Promotion and Tenure DocumentsGalbraith, John; Stewart, Ryan D. (2022-05-10)