Spatiotemporally-Resolved Velocimetry for the Study of Large-Scale Turbulence in Supersonic Jets

TR Number

Date

2021-01-08

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The noise emitted from tactical supersonic aircraft presents a dangerous risk of noise-induced hearing loss for personnel who work near these jets. Although jet noise has many interacting features, large-scale turbulent structures are believed to dominate the noise produced by heated supersonic jets. To characterize the unsteady behavior of these large-scale turbulent structures, which can be correlated over several jet diameters, a velocimetry technique resolving a large region of the flow spatially and temporally is desired. This work details the development of time-resolved Doppler global velocimetry (TRDGV) for the study of large-scale turbulence in high-speed flows. The technique has been used to demonstrate three-component velocity measurements acquired at 250 kHz, and an analysis is presented to explore the implications of scaling the technique for studying large-scale turbulent behavior. The work suggests that the observation of low-wavenumber structures will not be affected by the large-scale measurement. Finally, a spatiotemporally-resolved measurement of a heated supersonic jet is achieved using large-scale TRDGV. By measuring a region spanning several jet diameters, the lifetime of turbulent features can be observed. The work presented in this dissertation suggests that TRDGV can be an invaluable tool for the discussion of turbulence with respect to aeroacoustics, providing a path for linking the flow to far-field noise.

Description

Keywords

Doppler global velocimetry, large-scale turbulence, jet noise

Citation