Manufacturing and Characterization of Gold-Black and Prediction and Measurement of its Directional Spectral Absorptivity

TR Number

Date

2021-01-26

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Gold-black has emerged as a popular absorptive coating for thermal radiation detectors in aerospace applications. The performance and accuracy of thermal radiation detectors largely depends on the surface optical properties of the absorptive coating. If the absorptivity of the layer is directional or wavelength dependent, then so will be the detector gain itself. This motivates our interest in the manufacture, physical characterization, and study of the wavelength and polarization sensitivity of the directional spectral absorptivity of gold-black. A first-principle model based on lossy antenna theory is presented to predict the polarization dependent directional spectral absorptivity of gold-black in the visible and near infrared. Results for normal spectral absorptivity are in good agreement with measurements reported in the literature. However, suitable experimental data were not available to validate the theory for directional spectral absorptivity. Therefore, an experimental campaign to fabricate and measure the directional spectral behavior of gold-black had to be undertaken to validate the first-principle model. New in-plane bidirectional reflectance distribution function (BRDF) measurements for two thicknesses (~4 μm and ~8 μm) of gold-black laid down on a gold mirror substrate are reported in the visible (532 nm) and near-infrared (800 and 850 nm) for p- and s-polarizations. The investigation is then extended to a three-layer sample, which is shown to exhibit off-specular reflectivity. Described are processes for laying down gold-black coatings and for measuring their in-plane BRDF as a function of thickness, wavelength, and polarization state. A novel method for retrieving the directional absorptivity from in-plane BRDF measurements is presented. The influence of polarization on directional absorptivity is shown to follow our earlier theory except at large incident zenith angles, where an unanticipated mirage effect is observed.

Description

Keywords

Gold-Black, Spectral Directional Absorptivity, Bidirectional Reflectance Distribution Function

Citation