Spectrum Management Issues in Centralized and Distributed Dynamic Spectrum Access

TR Number

Date

2021-07-22

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Dynamic spectrum access (DSA) is a powerful approach to mitigate the spectrum scarcity problem caused by rapid increase in wireless communication demands. Based on architecture design, DSA systems can be categorized as centralized and distributed. To successfully enable DSA, both centralized and distributed systems have to deal with spectrum management issues including spectrum sensing, spectrum decision, spectrum sharing and spectrum mobility. Our work starts by investigating the challenges of efficient spectrum monitoring in centralized spectrum sensing. Since central controllers usually require the presence information of incumbent users/primary users (IUs) for decision making, which is obtained during spectrum sensing, privacy issues of IUs become big concerns in some DSA systems where IUs have strong operation security needs. To aid in this, we design novel location privacy protection schemes for IUs. Considering the general drawbacks of centralized systems including high computational overhead for central controllers, single point failure and IU privacy issues, in many scenarios, a distributed DSA system is required. In this dissertation, we also cope with the spectrum sharing issues in distributed spectrum management, specifically the secondary user (SU) power control problem, by developing distributed and secure transmit power control algorithms for SUs.

In centralized spectrum management, the common approach for spectrum monitoring is to build infrastructures (e.g. spectrum observatories), which cost much money and manpower yet have relatively low coverage. To aid in this, we propose a crowdsourcing based spectrum monitoring system to capture the accurate spectrum utilization at a large geographical area, which leverages the power of masses of portable mobile devices. The central controller can accurately predict future spectrum utilization and intelligently schedule the spectrum monitoring tasks among mobile SUs accordingly, so that the energy of mobile devices can be saved and more spectrum activities can be monitored. We also demonstrate our system's ability to capture not only the existing spectrum access patterns but also the unknown patterns where no historical spectrum information exists. The experiment shows that our spectrum monitoring system can obtain a high spectrum monitoring coverage with low energy consumption.

Environmental Sensing Capability (ESC) systems are utilized in DSA in 3.5 GHz to sense the IU activities for protecting them from SUs' interference. However, IU location information is often highly sensitive in this band and hence it is preferable to hide its true location under the detection of ESCs. As a remedy, we design novel schemes to preserve both static and moving IU's location information by adjusting IU's radiation pattern and transmit power. We first formulate IU privacy protection problems for static IU. Due to the intractable nature of this problem, we propose a heuristic approach based on sampling. We also formulate the privacy protection problem for moving IUs, in which two cases are analyzed: (1) protect IU's moving traces; (2) protect its real-time current location information. Our analysis provides insightful advice for IU to preserve its location privacy against ESCs. Simulation results show that our approach provides great protection for IU's location privacy.

Centralized DSA spectrum management systems has to bear several fundamental issues, such as the heavy computational overhead for central controllers, single point failure and privacy concerns of IU caused by large amounts of information exchange between users and controllers and often untrusted operators of the central controllers. In this dissertation, we propose an alternative distributed and privacy-preserving spectrum sharing design for DSA, which relies on distributed SU power control and security mechanisms to overcome the limitations of centralized DSA spectrum management.

Description

Keywords

dynamic spectrum access, spectrum monitoring, location privacy protection, transmit power control

Citation