An Investigation of Anchor Nut Loosening and Review of Tightening Procedures for Anchor Rods in Highway Ancillary Structures

TR Number
Date
2020-04-14
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Ancillary structures are highway support structures such as traffic signals, sign structures, luminaires, and high-mast light towers which are typically fastened to a concrete foundation using embedded anchor rods and anchor nuts. The inventory of ancillary structures across the United States is huge, and these structures vary dramatically in type, age, size, and material. There have been reported cases of anchor nut loosening on ancillary structures in the past few decades, but the cause of loosening is still unknown. Ancillary structures are susceptible to vibrations due to different wind loadings like natural gusts, vortex shedding, galloping, and truck-induced gusts. Wind-induced vibrations are believed to be one of the potential causes of anchor nut loosening. Previous research also suggests that vibrations can lead to loosening of nuts in structural and mechanical connections. There is concern regarding the current tightening procedures specified in the various federal and state specifications. Improper tightening can potentially lead to anchor nut loosening under the effect of wind-induced vibrations. In ancillary structures, the anchor rods and nuts are first snug-tightened using a wrench before fully pretensioning them as per the current specifications. The snug-tight condition is vaguely defined at present and needs revisions to avoid any under-tightening or over-tightening. Galvanization and overtapping of the anchor nuts also pose a potential concern. Anchor nuts are tapped oversize after galvanization to ensure the nuts fit well on the galvanized rod. American Society for Testing and Materials (ASTM) standards provide specific allowable tolerances on the thread parameters of the anchor rod and nut after galvanization and overtapping. Any deviation from the allowable tolerances can lead to gaps between the mating threads, which can contribute to the loosening of nuts under vibrations.

This study focuses on investigating the following potential causes of loosening: improper tightening, wind-induced vibrations, snug-tight condition, and thread fabrication tolerance. Current tightening procedures for double-nut and single-nut connections on ancillary structures were verified using a tightening study as part of the investigation. New revisions to the specified nut rotation values for double-nut connections and a draft for proposed new specifications on single-nut connections has been provided as a result of discrepancies and inconsistencies in the current specifications. Vibration testing of a full-scale traffic signal was conducted on the basis of results from a four-month field monitoring program in order to investigate the effects of wind-induced vibrations on anchor nut loosening. It was concluded from testing that improper tightening (pretension < 5ksi) can lead to loosening of anchor nuts under wind-induced vibrations. A small-scale testing was also conducted to verify the results from the large-scale vibration testing. Snug-tight pretension in grade 55, 1-inch and 2-inch anchor rods was found to be highly variable due to different wrench lengths and personnel strength. Thread parameters of galvanized anchor rods and nuts procured from 3 different regional suppliers were found to be within specified tolerances. Various recommendations were then made as a result of the above tightening, vibration, and thread tolerance studies in an effort to reduce the cases related to anchor nut loosening in the future.

Description
Keywords
Anchor Nuts, Anchor Rods, Double Nut Moment Connection, Nut Loosening, Ancillary Structures, Wind-induced Vibrations, Tightening, Thread Tolerance, Snug-tight
Citation