Synthesis and Structure-Property Relationships of Polysaccharide-Based Block Copolymers and Hydrogels

TR Number
Date
2020-02-04
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Polysaccharides are known as among the most abundant natural polymers on the Earth. As this class of material is usually renewable, biodegradable, biocompatible in many contexts and environmentally friendly, it is of great interest to use these benign polymers to design and prepare materials, especially for applications with green and biomedical purposes. In this dissertation we will discuss novel pathways to two different types of polysaccharide-based materials: block copolymers and hydrogels. Block copolymers are composed of two or even more covalent bonded polymer blocks that have quite distinct properties. Synthesis of polysaccharide-based block copolymers is an attractive and challenging research topic, opening up promising application potential and requiring advances in polysaccharide regio- and chemoselectivity. Herein, we report two independent approaches to prepare these interesting and potential useful materials. In one approach, trimethyl cellulose was modified regiospecifically at the reducing end anomeric carbon to create an ω-unsaturated alkyl acetal by solvolysis with an ω-unsaturated alcohol. Then, olefin cross-metathesis, a known versatile and mild tool for polysaccharide chemical modification, was used to couple the trimethyl cellulose block with various polymer blocks containing acrylates. To demonstrate the method, trimethyl cellulose-b-poly(tetrahydrofuran), cellulose-b-poly(ethylene glycol), and cellulose-b-poly(lactic acid) were synthesized by this coupling strategy. In another approach, we introduced a simple and novel method to prepare dextran-based block copolymers. In this strategy, N-bromosuccinimide (NBS)/triphenyl phosphine (PPh3) was chosen to regioselectively brominate the only primary alcohol of linear unbranched dextran. The resulting dextran, bearing a terminal C-6 bromide, was coupled with several amine terminated polymers via SN2 substitution to obtain block copolymers, including dextran-b-polystyrene, dextran-b-poly(N-isopropylacrylamide) and dextran-b-poly(ethylene glycol). Dextran-b-poly(N-isopropylacrylamide) exhibits thermally-induced micellization as revealed by dynamic light scattering, forming micelles with 155 nm diameter at 40 °C. Dextran-b-polystyrene film was analyzed by small angle X-ray scattering, suggesting the existence of microphase separation. This dissertation also introduces a novel, simple and effective strategy to prepare polysaccharide-based hydrogels. Hydrogels are typically crosslinked hydrophilic polymers that have high water affinity and no longer dissolve in water. Polysaccharide-based hydrogels are of great interest to for biomedical applications due to their benefits including biocompatibility, polyfunctionality, and biodegradability. Recently the Edgar group has discovered that chemoselective oxidation of oligo(hydroxypropyl)-substituted polysaccharides impairs ketone groups at the termini of the oligo(hydroxypropyl) side chains. These ketones can condense with amines to form imines, leading hydrogel formation., Based on this concept, we prepared oxidized hydroxypropyl polysaccharide/chitosan hydrogels. This class of all-polysaccharide hydrogels exhibits a series of interesting properties such as tunable moduli (300 Pa to 13 kPa), self-healing, injectability, and high swelling ratios. To further explore imine-crosslinked hydrogels, we designed thermally responsive hydrogels by using a Jeffamine, a polyethylene oxide-b-polypropylene oxide-b-polyethylene oxide triblock copolymer with two terminal amines. As the Jeffamine has a lower critical solution temperature, oxidized hydroxypropyl cellulose/Jeffamine hydrogels display moduli that are tunable by controlling the temperature.

Description
Keywords
cellulose ether, dextran, block copolymer, in situ forming hydrogel, self-healing, injection, thermal-induced property.
Citation