Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Variable-Step Double-Integration Multi-Step Integrator

    Thumbnail
    View/Open
    dissertation.pdf (1.276Mb)
    Downloads: 60
    Date
    2004-04-26
    Author
    Berry, Matthew M.
    Metadata
    Show full item record
    Abstract
    A new method of numerical integration is presented here, the variable-step Stormer-Cowell method. The method uses error control to regulate the step size, so larger step sizes can be taken when possible, and is double-integration, so only one evaluation per step is necessary when integrating second-order differential equations. The method is not variable-order, because variable-order algorithms require a second evaluation. The variable-step Stormer-Cowell method is designed for space surveillance applications,which require numerical integration methods to track orbiting objects accurately. Because of the large number of objects being processed, methods that can integrate the equations of motion as fast as possible while maintaining accuracy requirements are desired. The force model used for earth-orbiting objects is quite complex and computationally expensive, so methods that minimize the force model evaluations are needed. The new method is compared to the fixed-step Gauss-Jackson method, as well as a method of analytic step regulation (s-integration), and the variable-step variable-order Shampine-Gordon integrator. Speed and accuracy tests of these methods indicate that the new method is comparable in speed and accuracy to s-integration in most cases, though the variable-step Stormer-Cowell method has an advantage over s-integration when drag is a significant factor. The new method is faster than the Shampine-Gordon integrator, because the Shampine-Gordon integrator uses two evaluations per step, and is biased toward keeping the step size constant. Tests indicate that both the new variable-step Stormer-Cowell method and s-integration have an advantage over the fixed-step Gauss-Jackson method for orbits with eccentricities greater than 0.15.
    URI
    http://hdl.handle.net/10919/11155
    Collections
    • Doctoral Dissertations [16575]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us