Machine Learning-Based Receiver in Multiple Input Multiple Output Communications Systems
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Bridging machine learning technologies to multiple-input-multiple-output (MIMO) communications systems is a primary driving force for next-generation wireless systems. This dissertation introduces a variety of neural network structures for symbol detection/equalization tasks in MIMO systems configured with two different waveforms, orthogonal frequency-division multiplexing (OFDM) and orthogonal time frequency and space (OTFS). The former one is the major air interface in current cellular systems. The latter one is developed to handle high mobility. For the sake of real-time processing, the introduced neural network structures are incorporated with inductive biases of wireless communications signals and operate in an online training manner. The utilized inductive priors include the shifting invariant property of quadrature amplitude modulation, the time-frequency relation inherent in OFDM signals, the multi-mode feature of massive antennas, and the delay-Doppler representation of doubly selective channel. In addition, the neural network structures are rooted in reservoir computing - an efficient neural network computational framework with decent generalization performance for limited training datasets. Therefore, the resulting neural network structures can learn beyond observation and offer decent transmission reliability in the low signal-to-noise ratio (SNR) regime. This dissertation includes comprehensive simulation results to justify the effectiveness of the introduced NN architectures compared with conventional model-based approaches and alternative neural network structures.