VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Deep Reinforcement Learning for Next Generation Wireless Networks with Echo State Networks

Files

TR Number

Date

2021-08-26

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This dissertation considers a deep reinforcement learning (DRL) setting under the practical challenges of real-world wireless communication systems. The non-stationary and partially observable wireless environments make the learning and the convergence of the DRL agent challenging. One way to facilitate learning in partially observable environments is to combine recurrent neural network (RNN) and DRL to capture temporal information inherent in the system, which is referred to as deep recurrent Q-network (DRQN). However, training DRQN is known to be challenging requiring a large amount of training data to achieve convergence. In many targeted wireless applications in the 5G and future 6G wireless networks, the available training data is very limited. Therefore, it is important to develop DRL strategies that are capable of capturing the temporal correlation of the dynamic environment that only requires limited training overhead. In this dissertation, we design efficient DRL frameworks by utilizing echo state network (ESN), which is a special type of RNNs where only the output weights are trained. To be specific, we first introduce the deep echo state Q-network (DEQN) by adopting ESN as the kernel of deep Q-networks. Next, we introduce federated ESN-based policy gradient (Fed-EPG) approach that enables multiple agents collaboratively learn a shared policy to achieve the system goal. We designed computationally efficient training algorithms by utilizing the special structure of ESNs, which have the advantage of learning a good policy in a short time with few training data. Theoretical analyses are conducted for DEQN and Fed-EPG approaches to show the convergence properties and to provide a guide to hyperparameter tuning. Furthermore, we evaluate the performance under the dynamic spectrum sharing (DSS) scenario, which is a key enabling technology that aims to utilize the precious spectrum resources more efficiently. Compared to a conventional spectrum management policy that usually grants a fixed spectrum band to a single system for exclusive access, DSS allows the secondary system to dynamically share the spectrum with the primary system. Our work sheds light on the real deployments of DRL techniques in next generation wireless systems.

Description

Keywords

Deep Reinforcement Learning, Echo State Network, Dynamic Spectrum Sharing

Citation