Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Shotgun metagenomic analysis of antimicrobial resistance in wastewater

    Thumbnail
    View/Open
    Maile-Moskowitz_AZ_D_2023.pdf (13.30Mb)
    Downloads: 0
    Supporting documents (154.4Kb)
    Downloads: 0
    Supporting documents (136.3Kb)
    Downloads: 0
    Date
    2023-03-13
    Author
    Maile-Moskowitz, Ayella Zorka
    Metadata
    Show full item record
    Abstract
    Antimicrobial resistance (AMR) threatens our modern standard of living with the potential return to a pre-antibiotic condition where deadly infections are no longer treatable. Wastewater treatment plants (WWTPs) are vital components in water sanitation infrastructure and are now also being recognized as valuable monitoring points for antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) disposed of or excreted by human populations. Hospital waste water is of special interest as a potential focused monitoring point and in general research is needed to establish the benefits of both on-site and community-scale wastewater treatment as important barriers to the disseminators of ARGs into the environment. The research aims described herein examine these components of wastewater treatment and how they relate to AMR indicators identified through metagenomic sequencing. Through monitoring of local WWTPs, it was found that AMR indicators shifted over time and in relation to human behavior that changed due to the COVID-19 pandemic. Hospital wastewater did not measurably impact the microbiome during simulated activated sludge wastewater treatment according to broad-scale metagenomic ARG profiling; however, some clinically-relevant ARGs escaped treatment. Lastly, a study of a transect of WWTPs indicated impacts on the abundance of certain ARGs in downstream riverine receiving environments. Nonetheless, there appeared to be a number of other factors at play, and upstream and downstream resistomes tended to remain similar, calling for further research to delineate impacts of various wastewaters and treatments on ARGs in affected aquatic environments.
    General Audience Abstract
    Antimicrobial resistance (AMR) occurs when bacteria, viruses, and fungi are able to survive in the presence of antibiotics because they carry antibiotic resistance genes (ARGs) encoded in their DNA. AMR is a major public health concern as it makes it so that antibiotics are no longer effective against potentially deadly infections. Wastewater treatment plants (WWTPs) are being discovered as a hub of opportunity for monitoring potential AMR problems in a community. WWTPs receive sewage from homes and various industries. This sewage contains rich information for researchers to examine in terms of which antibiotics, bacteria, and ARGs are circulating in the community. This makes it possible to find out which antibiotics are being consumed in the community and which ARGs might be prevalent. The purpose of this research was to better understand both how WWTPs can be used as monitoring points for AMR and how they can be improved to help reduce ARGs emitted to rivers and streams where treated water is discharged. It was found that the types of ARGs prevalent in wastewater changed over time, especially during the COVID-19 pandemic as people worked from home and changed habits regarding doctors' visits, which impacted antibiotic use. Hospital sewage was studied as a useful indicator of pathogens and ARGs that are challenging a community and also the antibiotics being used. This research explored what happened to ARGs during the treatment of domestic (i.e., from people's homes) wastewater along with hospital wastewater and found that hospital wastewater introduced some ARGs that are typically found in clinical settings, but did not negatively impact the overall wastewater treatment process. Finally, the impact that WWTPs have on rivers to which treated water is discharged was explored. The results indicated that certain ARGs were elevated downstream of the WWTPs. However, when examining all ARGs together, no major shifts due to the treated wastewater were apparent.
    URI
    http://hdl.handle.net/10919/114095
    Collections
    • Doctoral Dissertations [16435]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us