Scholarly Works, Biomedical Sciences and Pathobiology
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Recent Submissions
- Avian Immunoglobulin Y Antibodies Targeting the Protruding or Shell Domain of Norovirus Capsid Protein Neutralize Norovirus Replication in the Human Intestinal Enteroid SystemXia, Ming; Ichou, Mohamed; Landivar, Mathew; Zhou, Peng; Vadlamudi, Sai Navya; Leruth, Alice; Nyblade, Charlotte; Cox, Paul; Yuan, Lijuan; Goepp, Julius; Tan, Ming (MDPI, 2025-12-05)Background: Norovirus is a leading cause of epidemic acute gastroenteritis worldwide, associated with significant morbidity, mortality, and economic loss. Despite its global impact, no licensed vaccine is currently available, and vaccine development remains challenging. Methods: We explored avian immunoglobulin Y (IgY) antibodies as a low-cost countermeasure against norovirus infection. We generated recombinant protruding (P) domain proteins from the capsid protein (VP1) of noroviruses, representing two GII.4 variants and the GII.6 genotype. These were combined into a single immunogen to immunize laying hens to produce norovirus VP1-specific IgY antibodies. Results: Immunization of laying hens with the P domain proteins elicited high-titer (>1:450,000) P domain-specific IgY antibodies. The yolk-derived IgY effectively inhibited binding of various norovirus P particles to their histo-blood group antigen ligands, with 50% blocking titers (BT50) up to 1:8533 against homotypic GII.4 and 1:667 against heterotypic G1.1 Norwalk virus P particles. Importantly, the IgY neutralized replication of GII.4 norovirus in the human intestinal enteroid (HIE) system at a high titer of over 1:2500, equivalent to 0.70 µg/mL of total IgY. We also produced norovirus shell (S) domain proteins and corresponding IgY antibodies, which neutralized GII.4 norovirus replication in the HIE model at a titer of ~1:800, equivalent to 2.98 µg/mL of total IgY. This provides the first evidence that the S domain contains neutralizing epitopes. Conclusions: Our findings support the potential of IgY targeting norovirus P or S domains as a scalable, cost-effective strategy for preventing norovirus infection and disease.
- Multiplexed smFISH reveals the spatial organization of neuropil localized mRNAs is linked to abundanceTarannum, Renesa; Mun, Grace; Quddos, Fatima; Swanger, Sharon A.; Steward, Oswald; Farris, Shannon (Society for Neuroscience, 2025-11)RNA localization to neuronal axons and dendrites provides spatiotemporal control over gene expression to support synapse function. Neuronal messenger RNAs (mRNAs) localize as ribonucleoprotein particles (RNPs), commonly known as RNA granules, the composition of which influences when and where proteins are made. High-throughput sequencing has revealed thousands of mRNAs that localize to the hippocampal neuropil. Whether these mRNAs are spatially organized into common RNA granules or distributed as independent mRNAs for proper delivery to synapses is debated. Here, using highly multiplexed single molecule fluorescence in situ hybridization (HiPlex smFISH) and colocalization analyses, we investigate the subcellular spatial distribution of 15 synaptic neuropil localized mRNAs in the male and female rodent hippocampus. We observed that these mRNAs are present in the neuropil as heterogeneously sized fluorescent puncta with spatial colocalization patterns that generally scale by neuropil mRNA abundance. Indeed, differentially expressed mRNAs across cell types displayed colocalization patterns that scaled by abundance, as did simulations that reproduce cell-specific differences in abundance. Thus, the probability of these mRNAs colocalizing in the neuropil is best explained by stochastic interactions based on abundance, which places constraints on the mechanisms mediating efficient transport to synapses.Significance statement RNA localization establishes compartment-specific gene expression that is critical for synapse function. Thousands of mRNAs localize to the hippocampal synaptic neuropil, however, whether mRNAs are spatially organized as similar or distinctly composed ribonucleoprotein particles for delivery to synapses is unknown. Using multiplexed smFISH to assess the spatial organization of 15 neuropil localized mRNAs, we find that these mRNAs are present in variably sized puncta suggestive of heterogeneous transcript copy number states. RNA colocalization analyses in multiple hippocampal cell types suggest that the spatial relationship of these mRNAs is best described by their abundance in the neuropil. Stochastic RNA-RNA interactions based on neuropil abundance are consistent with models indicating that global principles, such as energy minimization, influence population localization strategies.
- Obesity fosters severe disease outcomes in a mouse model of coronavirus infection associated with transcriptomic abnormalitiesRai, Pallavi; Marano, Jeffrey M.; Kang, Lin; Coutermarsh-Ott, Sheryl; Daamen, Andrea R.; Lipsky, Peter E.; Weger-Lucarelli, James (Wiley, 2024-04-01)Obesity has been identified as an independent risk factor for severe outcomes in humans with coronavirus disease 2019 (COVID-19) and other infectious diseases. Here, we established a mouse model of COVID-19 using the murine betacoronavirus, mouse hepatitis virus 1 (MHV-1). C57BL/6 and C3H/HeJ mice exposed to MHV-1 developed mild and severe disease, respectively. Obese C57BL/6 mice developed clinical manifestations similar to those of lean controls. In contrast, all obese C3H/HeJ mice succumbed by 8 days postinfection, compared to a 50% mortality rate in lean controls. Notably, both lean and obese C3H/HeJ mice exposed to MHV-1 developed lung lesions consistent with severe human COVID-19, with marked evidence of diffuse alveolar damage (DAD). To identify early predictive biomarkers of worsened disease outcomes in obese C3H/HeJ mice, we sequenced RNA from whole blood 2 days postinfection and assessed changes in gene and pathway expression. Many pathways uniquely altered in obese C3H/HeJ mice postinfection aligned with those found in humans with severe COVID-19. Furthermore, we observed altered gene expression related to the unfolded protein response and lipid metabolism in infected obese mice compared to their lean counterparts, suggesting a role in the severity of disease outcomes. This study presents a novel model for studying COVID-19 and elucidating the mechanisms underlying severe disease outcomes in obese and other hosts.
- Avian immunoglobulin Y antibodies targeting the protruding or shell domain of norovirus capsid protein neutralize norovirus replication in the human intestinal enteroid systemXia, Ming; Ichou, Mohamed; Landivar, Mathew; Zhou, Peng; Vadlamudi, Sai Navya; Leruth, Alice; Nyblade, Charlotte; Cox, Paul; Yuan, Lijuan; Goepp, Julius; Tan, Ming (MDPI, 2025-12-05)Background: Norovirus is a leading cause of epidemic acute gastroenteritis worldwide, associated with significant morbidity, mortality, and economic loss. Despite its global impact, no licensed vaccine is currently available, and vaccine development remains challenging. Methods: We explored avian immunoglobulin Y (IgY) antibodies as a low-cost countermeasure against norovirus infection. We generated recombinant protruding (P) domain proteins from the capsid protein (VP1) of noroviruses, representing two GII.4 variants and the GII.6 genotype. These were combined into a single immunogen to immunize laying hens to produce norovirus VP1-specific IgY antibodies. Results: Immunization of laying hens with the P domain proteins elicited high-titer (>1:450,000) P domain-specific IgY antibodies. The yolk-derived IgY effectively inhibited binding of various norovirus P particles to their histo-blood group antigen ligands, with 50% blocking titers (BT50) up to 1:8533 against homotypic GII.4 and 1:667 against heterotypic G1.1 Norwalk virus P particles. Importantly, the IgY neutralized replication of GII.4 norovirus in the human intestinal enteroid (HIE) system at a high titer of over 1:2500, equivalent to 0.70 µg/mL of total IgY. We also produced norovirus shell (S) domain proteins and corresponding IgY antibodies, which neutralized GII.4 norovirus replication in the HIE model at a titer of ~1:800, equivalent to 2.98 µg/mL of total IgY. This provides the first evidence that the S domain contains neutralizing epitopes. Conclusions: Our findings support the potential of IgY targeting norovirus P or S domains as a scalable, cost-effective strategy for preventing norovirus infection and disease.
- High-Frequency Irreversible Electroporation Alters Proteomic Profiles and Tropism of Small Tumor-Derived Extracellular Vesicles to Promote Immune Cell InfiltrationMurphy, Kelsey R.; Aycock, Kenneth N.; Marsh, Spencer; Yang, Liping; Hinckley, Jonathan; Selmek, Aubrie; Gourdie, Robert G.; Bracha, Shay; Davalos, Rafael V.; Rossmeisl, John H.; Dervisis, Nikolaos G. (MDPI, 2025-11-13)High-frequency irreversible electroporation (H-FIRE) is a nonthermal tumor ablation technique that disrupts the blood–brain barrier (BBB) in a focal and reversible manner. However, the mechanisms underlying this disruption remain poorly understood, particularly the role of small tumor-derived extracellular vesicles (sTDEVs) released from ablated tumor cells. In this study, we investigate the proteomic and functional alterations of sTDEVs released from F98 glioma and LL/2 Lewis lung carcinoma cells following H-FIRE ablation. Mass spectrometry analysis revealed 108 unique proteins in sTDEVs derived from ablative doses of H-FIRE, which are capable of disrupting the BBB in an in vitro model. Proteomic analysis of TDEVs highlights key changes in pathways related to integrin signaling, Platelet-derived growth factor receptor (PDGFR) signaling, and ubiquitination, which may underline their interactions with brain endothelial cells. These “disruptive” sTDEVs exhibit enhanced tropism for cerebral endothelial cells both in vitro and in vivo, where they persist in the brain longer than sTDEVs released after non-ablative H-FIRE doses. Notably, when introduced into a healthy Fischer rat model, disruptive sTDEVs are associated with increased recruitment of Iba1+ immune cells, suggesting a potential role in modulating post-ablation immune responses. However, despite their altered protein composition, these vesicles do not directly increase BBB permeability in vivo. This study is the first to demonstrate that electroporation-based tumor ablation significantly alters the composition and functionality of tumor-derived extracellular vesicles, potentially influencing the tumor microenvironment post-ablation. These findings have important implications for developing multimodal treatment strategies that combine H-FIRE with systemic therapies to enhance efficacy while managing the peritumoral microenvironment.
- Laser-assisted surface alloying of titanium with silver to enhance antibacterial and bone-cell mineralization properties of orthopedic implantsSedaghat, Sotoudeh; Krishnakumar, Akshay; Selvamani, Vidhya; Barnard, James P.; Nejati, Sina; Wang, Haiyan; Detwiler, David A.; Seleem, Mohamed N.; Rahimi, Rahim (Royal Society Chemistry, 2024-05-08)Orthopedic device-related infection (ODRI) poses a significant threat to patients with titanium-based implants. The challenge lies in developing antibacterial surfaces that preserve the bulk mechanical properties of titanium implants while exhibiting characteristics similar to bone tissue. In response, we present a two-step approach: silver nanoparticle (AgNP) coating followed by selective laser-assisted surface alloying on commonly used titanium alumina vanadium (TiAl6V4) implant surfaces. This process imparts antibacterial properties without compromising the bulk mechanical characteristics of the titanium alloy. Systematic optimization of laser beam power (8-40 W) resulted in an optimized surface (32 W) with uniform TiAg alloy formation. This surface displayed a distinctive hierarchical mesoporous textured surface, featuring cauliflower-like nanostructures measuring between 5-10 nm uniformly covering spatial line periods of 25 mu m while demonstrating homogenous elemental distribution of silver throughout the laser processed surface. The optimized laser processed surface exhibited prolonged superhydrophilicity (40 days) and antibacterial efficacy (12 days) against Staphylococcus aureus and Escherichia coli. Additionally, there was a significant twofold increase in bone mineralization compared to the pristine Ti6Al4V surface (p < 0.05). Rockwell hardness tests confirmed minimal (<1%) change in bulk mechanical properties compared to the pristine surface. This innovative laser-assisted approach, with its precisely tailored surface morphology, holds promise for providing enduring antibacterial and osteointegration properties, rendering it an optimal choice for modifying load-bearing implant devices without altering material bulk characteristics.
- Microneedles for Enhanced Bacterial Pathogen Inactivation and Accelerated Wound HealingKrishnakumar, Akshay; Gallina, Nicholas L. F.; Sarnaik, Devendra; McCain, Robyn R.; Crain, Christa; Tipton, Mason; Seleem, Mohamed; Bhunia, Arun K.; Rahimi, Rahim (Wiley, 2024-08-01)Bacterial wound infections are a significant socioeconomic concern in the modern healthcare industry owing to increased morbidity, prolonged hospital stay, and mortality. Bacterial infectious agents that colonize the wound bed develop biofilms, acting as a physical barrier that prevents the effective penetration of topical antimicrobials. Further, bacteria in such infectious wounds express a wide range of virulence factors promoting intercellular transmigration and host cell invasion complicating the treatment regimen. To address this need, a water-dissolvable poly-vinyl pyrrolidine (PVP), calcium peroxide (CPO) infused microneedle structure (denoted as PVP/CPO MN) for effective transdermal delivery of antimicrobial payload deep into the tissues is developed. Fluid exudate from the wound bed dissolves the PVP/CPO MN enabling the release of CPO deep into the infected wound bed. A slow catalytic decomposition of CPO results in the sustained release of reactive oxygen species (ROS) deep within the infected wound inhibiting the inter- and intracellular pathogens. Here, a systematic study of microneedle fabrication and sterilization after complete packaging is conducted to ensure scalability and safe applicability while maintaining mechanical and antibacterial properties. In vitro, antibacterial efficacy of the microneedles is validated against two common wound pathogens, Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). Moreover, the PVP/CPO MN exhibited significant efficacy in eradicating both extracellular and intracellular bacterial populations within an in vivo porcine wound model. Additionally, the microneedle technology facilitated a faster wound healing, with approximate to 30% increase compared to control and a 15% improvement over conventional silver dressing. This study presents a novel approach utilizing dissolving microneedles loaded with calcium peroxide (CPO) for eradicating both intercellular and intracellular pathogens in infected wounds. Through systematic in vitro and in vivo experiments, the microneedles demonstrate effective antibacterial properties against P. aeruginosa and S. aureus, leading to accelerated wound healing. The technology showcases promising potential for clinical translation in wound care practice. image
- TKL family kinases in human apicomplexan pathogensAli, Dima Hajj; Gaji, Rajshekhar Y. (Elsevier, 2024-09-01)Apicomplexan parasites are the primary causative agents of many human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. These opportunistic pathogens undergo complex life cycles with multiple developmental stages, wherein many key steps are regulated by phosphorylation mechanisms. The genomes of apicomplexan pathogens contain protein kinases from different groups including tyrosine kinase-like (TKL) family proteins. Although information on the role of TKL kinases in apicomplexans is quite limited, recent studies have revealed the important role of this family of proteins in apicomplexan biology. TKL kinases in these protozoan pathogens show unique organization with many novel domains thus making them attractive candidates for drug development. In this mini review, we summarize the current understanding of the role of TKL kinases in human apicomplexan pathogens' (Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium parvum) biology and pathogenesis.
- Meningeal vascular Aβ deposition associates with cerebral hypoperfusion and compensatory collateral remodelingKaloss, Alexandra M.; Browning, Jack L.; Li, Jiangtao; Pan, Yuhang; Watsen, Sachi; Sontheimer, Harald; Theus, Michelle H.; Olsen, Michelle L. (2025-11-13)Background: Global reductions in cerebral blood flow (CBF) are among the earliest and most consistent abnormalities observed in Alzheimer’s disease (AD), preceding both cortical plaque formation and cognitive decline. While the pial arterial network—a critical supplier of intracortical perfusion—has been overlooked in this context, it may play a pivotal role in early vascular pathology. Here, we report extensive cerebral amyloid angiopathy (CAA) within the pial artery and arteriole network in the J20 (PDGF-APPSw, Ind) mouse model of AD. Methods: Using premortem delivery of Methoxy-XO4 to label Aβ, and arterial vascular labeling, we assessed Aβ burden on the pial artery/arteriole network and cerebral blood flow in aged male and female WT and J20 AD mice. Results: We show that 12-month-old J20 mice exhibit significant Aβ deposition across major leptomeningeal arteries (ACA, MCA) and pial collaterals, with ~ 40% vessel coverage in males and ~ 20% in females—substantially exceeding Aβ levels in cortical or hippocampal vessels. This vascular Aβ burden was accompanied by compensatory enlargement and increased tortuosity of pial collateral vessels. Yet, despite this apparent remodeling, CBF was reduced by ~ 15% in J20 mice, and this decline was significantly associated with leptomeningeal CAA burden. Conclusions: This is the first study to comprehensively characterize meningeal arterial Aβ accumulation in a preclinical model of vascular AD, mirroring recent observations in early-stage human disease. Our findings implicate meningeal CAA as a potential driver of early CBF disruption and suggest that pial collateral remodeling may reflect a compensatory response to vascular insufficiency. Moreover, we identify robust sex differences in CAA burden, paralleling sex-specific patterns of parenchymal Aβ pathology in humans. These results highlight the leptomeningeal vasculature as a novel and understudied locus for early AD pathology and a potential therapeutic target to preserve cerebrovascular integrity.
- Evaluation of pharmacokinetics of metoclopramide administered via subcutaneous bolus and intravenous constant rate infusion to adult horsesBrandon, Amy M.; Williams, Jarred M.; Davis, Jen L.; Martin, Emily G.; Capper, Ava M.; Crabtree, Naomi E. (Wiley, 2024-08-01)Objective: To determine the pharmacokinetics (PK) of metoclopramide administered via intravenous continuous rate infusion (IV CRI) and subcutaneous (SC) bolus and evaluate for gastrointestinal motility and adverse side effects. Study design: Experimental study; randomized, crossover design. Animals: Six healthy adult horses. Methods: Each horse received metoclopramide via IV CRI (0.04 mg/kg/h for 24 h) and SC bolus (0.08 mg/kg once), with >= 1 week washout period between. Plasma was analyzed by UPLC-MS/MS. Compartmental modeling was used to determine PK parameters for each treatment; nonparametric superposition was used to simulate multiple SC bolus regimens. Gastrointestinal motility and evidence of adverse effects were monitored. Results: Tmax (h) for SC bolus was 0.583 +/- 0.204 versus 17.3 +/- 6.41 for IV CRI, while Cmax (ng/mL) was 27.7 +/- 6.38 versus 43.6 +/- 9.97, respectively. AUC (h x ng/mL) was calculated as 902 +/- 189 for 24 h IV CRI versus 244 +/- 37.4 simulated for 0.08 mg/kg SC bolus every 8 h. Simulations revealed similar exposure between groups with administration of 0.96 mg/kg/day SC bolus, divided into three, four, or six doses. SC bolus bioavailability was estimated as 110 +/- 11.5%. No clear trends in motility alteration were identified. No adverse effects were noted. Conclusion: Repeated SC boluses of metoclopramide at 0.08 mg/kg would result in lower total drug exposure and Tmax than IV CRI administration but would be highly bioavailable. Clinical significance: Higher and/or more frequent SC bolus doses are needed to achieve a similar AUC to IV CRI. No adverse effects were noted; however, evaluation of alternative dosing strategies is warranted.
- Competitive Binding of Viral Nuclear Localization Signal Peptide and Inhibitor Ligands to Importin-α Nuclear Transport ProteinDelfing, Bryan M.; Laracuente, Xavier E.; Jeffries, William; Luo, Xingyu; Olson, Audrey; Foreman, Kenneth W.; Petruncio, Greg; Lee, Kyung Hyeon; Paige, Mikell; Kehn-Hall, Kylene; Lockhart, Christopher; Klimov, Dmitri K. (American Chemical Society, 2024-06-13)Venezuelan equine encephalitis virus (VEEV) is a highly virulent pathogen whose nuclear localization signal (NLS) sequence from capsid protein binds to the host importin-alpha transport protein and blocks nuclear import. We studied the molecular mechanisms by which two small ligands, termed I1 and I2, interfere with the binding of VEEV's NLS peptide to importin-alpha protein. To this end, we performed all-atom replica exchange molecular dynamics simulations probing the competitive binding of the VEEV coreNLS peptide and I1 or I2 ligand to the importin-alpha major NLS binding site. As a reference, we used our previous simulations, which examined noncompetitive binding of the coreNLS peptide or the inhibitors to importin-alpha. We found that both inhibitors completely abrogate the native binding of the coreNLS peptide, forcing it to adopt a manifold of nonnative loosely bound poses within the importin-alpha major NLS binding site. Both inhibitors primarily destabilize the native coreNLS binding by masking its amino acids rather than competing with it for binding to importin-alpha. Because I2, in contrast to I1, binds off-site localizing on the edge of the major NLS binding site, it inhibits fewer coreNLS native binding interactions than I1. Structural analysis is supported by computations of the free energies of the coreNLS peptide binding to importin-alpha with or without competition from the inhibitors. Specifically, both inhibitors reduce the free energy gain from coreNLS binding, with I1 causing significantly larger loss than I2. To test our simulations, we performed AlphaScreen experiments measuring IC50 values for both inhibitors. Consistent with in silico results, the IC50 value for I1 was found to be lower than that for I2. We hypothesize that the inhibitory action of I1 and I2 ligands might be specific to the NLS from VEEV's capsid protein.
- Paradoxical sex differences in a hamster model of angiotensin II-dependent hypertension and associated renal injuryJi, Hong; Nascimento, Laura G. d.; Ahn, Jungeun; Kwon, Dong H.; Williams, Gabrielle; Wu, Xie; Speth, Robert C.; Hawks, Seth A.; Duggal, Nisha K.; Saavedra, Juan M.; Sandberg, Kathryn; de Souza, Aline M. A. (2025-11-03)Background: Biological sex is a critical determinant in cardiovascular and renal disease outcomes. Although angiotensin II (Ang II) infusion is widely used to model hypertension in mice and rats, little is known about its effects in the Syrian hamster, a small rodent increasingly used for translational research. This study aimed to develop a model of chronic Ang II-induced hypertension in Syrian hamsters and investigate sex-specific differences in blood pressure, renal pathology, and components of the renin-angiotensin system (RAS). Methods: Male and female Syrian hamsters (8–9 weeks old) were infused subcutaneously with Ang II (200 ng/kg/min) or saline via osmotic minipumps for four weeks. Mean arterial pressure (MAP) and kidney wet weight were determined on the euthanasia day. The kidneys were analyzed for renal pathology; renal RAS enzymes (ACE and ACE2) were measured by colorimetric assay and qPCR; cytokines (IL-6 and IL-1β) were measured by qPCR; and the angiotensin receptor type 1 (AT1R) was measured by radioligand binding and qPCR. Results: Ang II infusion increased MAP in both sexes but elicited a significantly greater response in females (+ 50 mmHg) than males (+ 27 mmHg, p < 0.005). Female hamsters exhibited pronounced kidney injury, including acute tubular necrosis, glomerular sclerosis, and vascular fibrinoid necrosis, along with a 2-fold increase in kidney weight normalized to body weight. Ang II significantly downregulated renal ACE, ACE2, and AT1R expression and activity in females but not in males. Renal IL-6 and IL-1β mRNA levels were elevated 20-fold and 3.9-fold, respectively, in females, compared to modest increases in males. Conclusions: Female Syrian hamsters exhibit heightened vulnerability to Ang II-induced hypertension and renal damage compared to males, marked by exaggerated blood pressure elevation, enhanced renal inflammation, and suppression of classical RAS components. This novel hamster model provides a unique platform for studying sex-specific mechanisms of hypertension and renal pathology, with translational relevance for subpopulations of women who are at increased risk of Ang II-dependent hypertension-associated renal disease.
- The PTP4A3 inhibitor KVX-053 reduces Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virulence, inflammation, and development of acute lung injury in K18-hACE2 miceColunga-Biancatelli, Ruben M. L.; Solopov, Pavel A.; Woodson, Caitlin M.; Allen, Irving C.; Akhrymuk, Ivan; Akhrymuk, Maryna; Heath, Brittany N.; Ivester, Hannah M.; Day, Tierney; Austin, Dan E.; Kehn-Hall, Kylene; Lazo, John S.; Sharlow, Elizabeth R.; Catravas, John D. (2025-10-28)Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a global health crisis, marked by high transmissibility and virulence. Despite widespread vaccination efforts, effective treatments for COVID-19, particularly for severe cases leading to Acute Respiratory Distress Syndrome (ARDS), remain limited. This study investigates the efficacy of KVX-053, a protein tyrosine phosphatase type IVA (PTP4A3) small molecule inhibitor, in modulating SARS-CoV-2-induced inflammation and lung injury using in vitro cell models and in vivo K18-hACE2 transgenic mice. KVX-053 reduced in vitro pro-inflammatory cytokine expression, including TNFα, CXCL10, and CXCL11, without impacting viral replication or cell viability. K18-hACE2 mice treated with KVX-053 demonstrated marked improvement in clinical scores and reduced histological evidence of lung injury compared to untreated SARS-CoV-2-infected controls. KVX-053 mitigated the activation of key inflammatory mediators in the lung, including NLRP3 inflammasomes, IL-6, and phosphorylated STAT3, effectively curbing the “cytokine storm” associated with severe COVID-19. Importantly, treatment preserved lung parenchymal integrity, reduced edema, and minimized macrophage infiltration. Our findings highlight PTP4A3 as a potential critical regulator of the inflammatory response during SARS-CoV-2 infection. KVX-053, a potent and selective PTP4A3 inhibitor, emerges as a promising host-directed therapeutic strategy for mitigating ARDS and inflammation-driven lung injury in SARS-CoV-2 and potentially other respiratory viral infections. Future studies are required to optimize dosing strategies, elucidate precise molecular mechanisms, and validate these findings in clinical settings.
- Immune Evasion by the NSs Protein of Rift Valley Fever Virus: A Viral Houdini ActPetraccione, Kaylee; Omichinski, James G.; Kehn-Hall, Kylene (MDPI, 2025-10-21)Rift Valley fever virus (RVFV) is a negative-sense arbovirus that causes several severe diseases, including hemorrhagic fever in ruminants and humans. There are currently no FDA-approved vaccines or therapeutics for RVFV. The viral nonstructural protein NSs acts like a molecular Harry Houdini, the world-famous escape artist, to help the virus evade the host’s innate immune response and serves as the main virulence factor of RVFV. In this review, we discuss the molecular mechanisms by which NSs interacts with multiple factors to modulate host processes, evade the host immune response, and facilitate viral replication. The impact of NSs mutations that cause viral attenuation is also discussed. Understanding the molecular mechanisms by which NSs evades the host innate immune response is crucial for developing novel therapeutics and vaccines targeting RVFV.
- Infant Microbiota Communities and Human Milk Oligosaccharide Supplementation Independently and Synergistically Shape Metabolite Production and Immune Responses in Healthy MiceTripp, Patricia; Davis, Erin C.; Gurung, Manoj; Rosa, Fernanda; Bode, Lars; Fox, Renee; LeRoith, Tanya; Simecka, Christy; Seppo, Antti E.; Jaurorvinen, Kirsi M.; Yeruva, Laxmi (Elsevier, 2024-09-01)Background: Multiple studies have demonstrated associations between the early-life gut microbiome and incidence of inflammatory and autoimmune disease in childhood. Although microbial colonization is necessary for proper immune education, it is not well understood at a mechanistic level how specific fi c communities of bacteria promote immune maturation or drive immune dysfunction in infancy. Objectives: In this study, we aimed to assess whether infant microbial communities with different overall structures differentially influence immune and gastrointestinal development in healthy mice. Methods: Germ-free mice were inoculated with fecal slurries from Bifidobacterium fi dobacterium longum subspecies infantis positive (BIP) or B. longum subspecies infantis negative (BIN) breastfed infants; half of the mice in each group were also supplemented with a pool of human milk oligosaccharides (HMOs) for 14 d. Cecal microbiome composition and metabolite production, systemic and mucosal immune outcomes, and intestinal morphology were assessed at the end of the study. Results: The results showed that inoculation with a BIP microbiome results in a remarkably distinct microbial community characterized by higher relative abundances of cecal Clostridium senu stricto, , Ruminococcus gnavus, , Cellulosilyticum sp., and Erysipelatoclostridium sp. The BIP microbiome produced 2-fold higher concentrations of cecal butyrate, promoted branched short-chain fatty acid (SCFA) production, and further modulated serotonin, kynurenine, and indole metabolism relative to BIN mice. Further, the BIP microbiome increased the proportions of innate and adaptive immune cells in spleen, while HMO supplementation increased proliferation of mesenteric lymph node cells to phorbol myristate acetate and lipopolysaccharide and increased serum IgA and IgG concentrations. Conclusions: Different microbiome compositions and HMO supplementation can modulate SCFA and tryptophan metabolism and innate and adaptive immunity in young, healthy mice, with potentially important implications for early childhood health.
- Obesity's Unexpected Influence: Reduced Alphavirus Transmission and Altered Immune Activation in the VectorRai, Pallavi; Webb, Emily M.; Paulson, Sally L.; Kang, Lin; Weger-Lucarelli, James (Wiley, 2024-11-01)Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are emerging/re-emerging alphaviruses transmitted by Aedes spp. mosquitoes and responsible for recent disease outbreaks in the Americas. The capacity of these viruses to cause epidemics is frequently associated with increased mosquito transmission, which in turn is governed by virus-host-vector interactions. Although many studies have explored virus-vector interactions, significant gaps remain in understanding how vertebrate host factors influence alphavirus transmission by mosquitoes. We previously showed that obesity, a ubiquitous vertebrate host biological factor, reduces alphavirus transmission potential in mosquitoes. We hypothesized that alphavirus-infected obese bloodmeals altered immune genes and/or pathways in mosquitoes, thereby inhibiting virus transmission. To test this, we conducted RNA sequencing (RNA-seq) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) on midgut RNA from mosquitoes fed on alphavirus-infected lean and obese mice. This approach aimed to identify potential antiviral or proviral genes and pathways altered in mosquitoes after consuming infected obese bloodmeals. We found upregulation of the Toll pathway and downregulation of several metabolic and other genes in mosquitoes fed on alphavirus-infected obese bloodmeals. Through gene knockdown studies, we demonstrated the antiviral role of Toll pathway and proviral roles of AAEL009965 and fatty acid synthase (FASN) in the transmission of alphaviruses by mosquitoes. Therefore, this study utilized obesity to identify factors influencing alphavirus transmission by mosquitoes and this research approach may pave the way for designing broadly effective antiviral measures to combat mosquito-borne viruses, such as releasing transgenic mosquitoes deficient in the identified genes.
- Dietary prevention of antibiotic-induced dysbiosis and mortality upon aging in miceSmith, Kelsey M.; Francisco, Sarah G.; Zhu, Ying; Leroith, Tanya; Davis, Meredith L.; Crott, Jimmy W.; Barger, Kathryn; Greenberg, Andrew S.; Smith, Donald E.; Taylor, Allen; Yeruva, Laxmi; Rowan, Sheldon (Wiley, 2024-12-15)Oral antibiotic use is both widespread and frequent in older adults and has been linked to dysbiosis of the gut microbiota, enteric infection, and chronic diseases. Diet and nutrients, particularly prebiotics, may modify the susceptibility of the gut microbiome to antibiotic-induced dysbiosis. We fed 12-month-old mice a high glycemic (HG) or low glycemic (LG) diet with or without antibiotics (ampicillin and neomycin) for an additional 11 months. The glycemic index was modulated by the ratio of rapidly digested amylopectin starch to slowly digested amylose, a type-2-resistant starch. We observed a significant decrease in survival of mice fed a HG diet containing antibiotics (HGAbx) relative to those fed a LG diet containing antibiotics (LGAbx). HGAbx mice died with an enlarged and hemorrhagic cecum, which is associated with colonic hyperplasia and goblet cell depletion. Gut microbiome analysis revealed a pronounced expansion of Proteobacteria and a near-complete loss of Bacteroidota and Firmicutes commensal bacteria in HGAbx, whereas the LGAbx group maintained a population of Bacteroides and more closely resembled the LG microbiome. The predicted functional capacity for bile salt hydrolase activity was lost in HGAbx mice but retained in LGAbx mice. An LG diet containing amylose may therefore be a potential therapeutic to prevent antibiotic-induced dysbiosis and morbidity.
- Degradation of the α-Carboxyl Terminus 11 Peptide: In Vivo and Ex Vivo Impacts of Time, Temperature, Inhibitors, and Gender in RatTasdemiroglu, Yagmur; Council-Troche, McAlister; Chen, Miao; Ledford, Benjamin; Norris, Russell A.; Poelzing, Steven; Gourdie, Robert G.; He, Jia-Qiang (American Chemical Society, 2024-04-22)In previous research, a synthetic α-carboxyl terminus 1 (αCT1) peptide derived from connexin 43 (Cx43) and its variant (αCT11) showed beneficial effects in an ex vivo ischemia-reperfusion (I/R) heart injury model in mouse. In an in vivo mouse model of cryo-induced ventricular injury, αCT1 released from adhesive cardiac patches reduced Cx43 remodeling and arrhythmias, as well as maintained cardiac conduction. Whether intravenous injection of αCT1 or αCT11 produces similar outcomes has not been investigated. Given the possibility of peptide degradation in plasma, this study utilized in vivo I/R cardiac injury and ex vivo blood plasma models to examine factors that may limit the therapeutic potential of peptide therapeutics in vivo. Following tail vein administration of αCT11 (100 μM) in blood, no effect on I/R infarct size was observed in adult rat hearts on day 1 (D1) and day 28 (D28) after injury (p > 0.05). There was also no difference in the echocardiographic ejection fraction (EF%) between the control and the αCT11 groups (p > 0.05). Surprisingly, αCT11 in blood plasma collected from these rats was undetectable within ∼10 min after tail vein injection. To investigate factors that may modulate αCT11 degradation in blood, αCT11 was directly added to blood plasma isolated from normal rats without I/R and peptide levels were measured under different experimental conditions. Consistent with in vivo observations, significant αCT11 degradation occurred in plasma within 10 min at 22 and 37 °C and was nearly undetectable by 30 min. These responses were reduced by the addition of protease/phosphatase (PTase/PPTase) inhibitors to the isolated plasma. Interestingly, no significant differences in αCT11 degradation in plasma were noted between male and female rats. We conclude that fast degradation of αCT11 is likely the reason that no beneficial effects were observed in the in vivo I/R model and inhibition or shielding from PTase/PPTase activity may be a strategy that will assist with the viability of peptide therapeutics.
- Acute adenoviral infection elicits an arrhythmogenic substrate prior to myocarditisPadget, Rachel L.; Zeitz, Michael J.; Blair, Grace A.; Wu, Xiaobo; North, Michael D.; Tanenbaum, Mira T.; Stanley, Kari E.; Phillips, Chelsea M.; King, D. Ryan; Lamouille, Samy; Gourdie, Robert G.; Hoeker, Gregory S.; Swanger, Sharon A.; Poelzing, Steven; Smyth, James W. (American Heart Association, 2024-03-29)BACKGROUND: Viral cardiac infection represents a significant clinical challenge encompassing several etiological agents, disease stages, complex presentation, and a resulting lack of mechanistic understanding. Myocarditis is a major cause of sudden cardiac death in young adults, where current knowledge in the field is dominated by later disease phases and pathological immune responses. However, little is known regarding how infection can acutely induce an arrhythmogenic substrate before significant immune responses. Adenovirus is a leading cause of myocarditis, but due to species specificity, models of infection are lacking, and it is not understood how adenoviral infection may underlie sudden cardiac arrest. Mouse adenovirus type-3 was previously reported as cardiotropic, yet it has not been utilized to understand the mechanisms of cardiac infection and pathology. METHODS: We have developed mouse adenovirus type-3 infection as a model to investigate acute cardiac infection and molecular alterations to the infected heart before an appreciable immune response or gross cardiomyopathy. RESULTS: Optical mapping of infected hearts exposes decreases in conduction velocity concomitant with increased Cx43Ser368 phosphorylation, a residue known to regulate gap junction function. Hearts from animals harboring a phospho-null mutation at Cx43Ser368 are protected against mouse adenovirus type-3–induced conduction velocity slowing. Additional to gap junction alterations, patch clamping of mouse adenovirus type-3–infected adult mouse ventricular cardiomyocytes reveals prolonged action potential duration as a result of decreased IK1 and IKs current density. Turning to human systems, we find human adenovirus type-5 increases phosphorylation of Cx43Ser368 and disrupts synchrony in human induced pluripotent stem cell-derived cardiomyocytes, indicating common mechanisms with our mouse whole heart and adult cardiomyocyte data. CONCLUSIONS: Together, these findings demonstrate that adenoviral infection creates an arrhythmogenic substrate through direct targeting of gap junction and ion channel function in the heart. Such alterations are known to precipitate arrhythmias and likely contribute to sudden cardiac death in acutely infected patients.
- Tumor-derived extracellular vesicles disrupt the blood-brain barrier endothelium following high-frequency irreversible electroporationMurphy, Kelsey R.; Aycock, Kenneth N.; Marsh, Spencer; Hay, Alayna N.; Athanasiadi, Ilektra; Bracha, Shay; Chang, Christine; Gourdie, Robert G.; Davalos, Rafael V.; Rossmeisl, John H. Jr.; Dervisis, Nikolaos G. (Nature Portfolio, 2024-11-18)High-frequency irreversible electroporation (H-FIRE), a nonthermal brain tumor ablation therapeutic, generates a central tumor ablation zone while transiently disrupting the peritumoral blood–brain barrier (BBB). We hypothesized that bystander effects of H-FIRE tumor cell ablation, mediated by small tumor-derived extracellular vesicles (sTDEV), disrupt the BBB endothelium. Monolayers of bEnd.3 cerebral endothelial cells were exposed to supernatants of H-FIRE or radiation (RT)-treated LL/2 and F98 cancer cells. Endothelial cell response was evaluated microscopically and via flow cytometry for apoptosis. sTDEV were isolated following H-FIRE and RT, characterized via nanoparticle tracking analysis (NTA) and transmission electron microscopy, and applied to a Transwell BBB endothelium model to quantify permeability changes. Supernatants of H-FIRE-treated tumor cells, but not supernatants of sham- or RT-treated cells, disrupted endothelial cell monolayer integrity while maintaining viability. sTDEV released by glioma cells treated with 3000 V/cm H-FIRE increased permeability of the BBB endothelium model compared to sTDEV released after lower H-FIRE doses and RT. NTA revealed significantly decreased sTDEV release after the 3000 V/cm H-FIRE dose. Our results demonstrate that sTDEV increase permeability of the BBB endothelium after H-FIRE ablation in vitro. sTDEV-mediated mechanisms of BBB disruption may be exploited for drug delivery to infiltrative margins following H-FIRE ablation.