Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Biomedical Engineering and Mechanics
    • Scholarly Works, Department of Biomedical Engineering and Mechanics
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Biomedical Engineering and Mechanics
    • Scholarly Works, Department of Biomedical Engineering and Mechanics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A virtual hair cell, II: Evaluation of mechanoelectric transduction parameters

    Thumbnail
    View/Open
    Main article (2.014Mb)
    Downloads: 515
    Date
    2007-03-01
    Author
    Nam, J. H.
    Cotton, J. R.
    Grant, W.
    Metadata
    Show full item record
    Abstract
    The virtual hair cell we have proposed utilizes a set of parameters related to its mechanoelectric transduction. In this work, we observed the effect of such channel gating parameters as the gating threshold, critical tension, resting tension, and Ca2+ concentration. The gating threshold is the difference between the resting and channel opening tension exerted by the tip link assembly on the channel. The critical tension is the tension in the tip link assembly over which the channel cannot close despite Ca2+ binding. Our results show that 1), the gating threshold dominated the initial sensitivity of the hair cell; 2), the critical tension minimally affects the peak response, l(t), but considerably affects the time course of response, l(t), and the force-displacement, F-X, relationship; and 3), higher intracellular [Ca2+] resulted in a smaller fast adaptation time constant. Based on the simulation results we suggest a role of the resting tension: to help overcome the viscous drag of the hair bundle during the oscillatory movement of the bundle. Also we observed the three-dimensional bundle effect on the hair cell response by varying the number of cilia forced. These varying forcing conditions affected the hair cell response.
    URI
    http://hdl.handle.net/10919/25776
    Collections
    • Scholarly Works, Department of Biomedical Engineering and Mechanics [371]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us