Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two-Dimensional Analysis of Four Types of Water-Filled Geomembrane Tubes as Temporary Flood-Fighting Devices

    Thumbnail
    View/Open
    Komoll1.pdf (3.958Mb)
    Downloads: 3365
    Date
    2003-02-06
    Author
    Kim, Meeok
    Metadata
    Show full item record
    Abstract
    Two-dimensional analysis of four types of water-filled tube dams is carried out: an apron-tube dam, a single baffle tube dam, a sleeved tube dam, and a stacked tube dam. Since the analysis of the water-filled tube dam involves highly nonlinear geometric deformations and interactions with soil, fluid, and structure, it is solved numerically with the explicit finite difference program FLAC. The tube is numerically modeled with beam elements. The predicted contact regions are modeled with interface elements. The Mohr-Coulomb constitutive model is used for the soil. Water inside and outside of the tube is modeled as hydrostatic pressure and the pressures are continuously updated as the configuration of the tube is changed. The change of the internal water pressure head (IWPH) for maintaining a constant tube area during the deformation is simulated. The simulation is achieved by two iterative procedures, the secant method and the factored secant method. The numerical analysis results show good agreement with the experimental results overall: the deformation of the tube(s), the IWPH changes, and the critical external water heights. From the numerical simulation of the experiments and the parametric studies, the behavior of each type of water-filled tube dam is clarified. Also, the failure modes of the tube dams are examined. The failure mode of a tube dam depends on the configuration and IWPH of the tube dam and the characteristics of the soil surface.
    URI
    http://hdl.handle.net/10919/26315
    Collections
    • Doctoral Dissertations [15819]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us