Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sustainability of Residential Hot Water Infrastructure: Public Health, Environmental Impacts, and Consumer Drivers

    Thumbnail
    View/Open
    Brazeau_RH_D_2012.pdf (2.203Mb)
    Downloads: 329
    Date
    2012-03-23
    Author
    Brazeau, Randi Hope
    Metadata
    Show full item record
    Abstract
    Residential water heating is linked to the primary source of waterborne disease outbreaks in the United States, and accounts for greater energy demand than the combined water/wastewater utility sector. To date, there has been little research that can guide decision-making with regards to water heater selection and operation to minimize energy costs and the likelihood of waterborne disease. We have outlined three types of systems that currently dominate the marketplace: 1) a standard hot water tank with no hot water recirculation (STAND), 2) a hot water tank with hot water recirculation (RECIRC), and 3) an on-demand tankless hot water system with no hot water recirculation (DEMAND). Not only did the standard system outperform the hot water recirculation system with respect to temperature profile during flushing, but STAND also operated with 32 – 36% more energy efficiency. Although RECIRC did in fact save some water at the tap, when factoring in the energy efficiency reductions and associated water demand, RECIRC actually consumed up to 7 gpd more and cost consumers more money. DEMAND operated with virtually 100% energy efficiency, but cannot be used in many circumstances dependent on scaling and incoming water temperature, and may require expensive upgrades to home electrical systems. RECIRC had greater volumes at risk for pathogen growth when set at the lower end of accepted temperature ranges, and lower volumes at risk when set at the higher end when compared to STAND. RECIRC also tended to have much lower levels of disinfectant residual (40 -850%), 4-6 times as much hydrogen, and 3-20 times more sediment compared to standard tanks without recirculation. DEMAND had very small volumes of water at risk and relatively high levels of disinfection. A comparison study of optimized RECIRC conditions was compared to the baseline modes of operation. Optimization increased energy efficiency 5.5 – 60%, could save consumers 5 – 140% and increased the disinfectant residual up to 560% higher disinfectant residual as compared to the baseline RECIRC system. STAND systems were still between 3 – 55% more energy efficient and could save consumers between $19 - $158 annual on water and electrical costs. Thus, in the context of “green” design, RECIRC systems provide a convenience to consumers in the form of nearly instant hot water, at a cost of higher capital, operating and overall energy costs.
    URI
    http://hdl.handle.net/10919/26537
    Collections
    • Doctoral Dissertations [15783]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us