Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High Saturated Fat Diet Induces Gestational Diabetes, Perinatal Skeletal Malformation and Adult-Onset Chronic Diseases

    Thumbnail
    View/Open
    CHENGYALIANGDissertation.pdf (2.203Mb)
    Downloads: 111
    Date
    2009-04-03
    Author
    Liang, Chengya
    Metadata
    Show full item record
    Abstract
    Adult exposure to high fat diet (HFD) has been linked to increased risk of musculoskeletal, cardiovascular, and metabolic diseases; however, the contribution of gestational HFD to elevated oxidative stress (OS), perinatal cardiovascular, skeletal, and metabolic dysfunction as well as long-term effects on adult offspring are incompletely understood. Pathophysiologic mechanisms linking gestational HFD, OS, and insulin resistance to perinatal development and adult-onset chronic diseases are explored in the present study, and maternal antioxidant (quercetin) is offered as a potential preventive dietary supplement to reduce fetal and maternal sequelae of HFD. Female C57BL/6 mice were fed "cafeteria-style" HFD (including 32.1% saturated fat to mimic a typical fast food menu) with or without quercetin for one month prior to conception, and throughout gestation. HFD dams developed gestational diabetes with significantly increased placental OS and vasculopathy. Neonates were smaller at birth than age-matched controls, and surviving offspring developed type 2 diabetes, hypertension and osteoporosis during adulthood, despite having been fed healthy diet throughout their postnatal life. Additional measures of bone using three-dimensionally reconstructed computed tomographic image analysis (microCT) revealed microarchitectural changes of bone at birth, and at 6 and 12 months postnatally. Fetuses from HFD dams displayed diminished bone mineral density (BMD) and disrupted endochondral and intramembranous ossification with significantly shortened distal limb lengths, as compared to offspring of standard rodent chow dams. Skeletal malformation persisted into adulthood despite the fact that both control and HFD offspring were fed conventional rodent chow throughout postnatal life. The offspring gestationally exposed to HFD showed significant decreased femoral BMD at 6 months of age and dysregulation of distal femoral trabecular architecture at 12 months of age, indicating development of osteoporosis. We were able to reduce incidence of placental vasculopathy, fetal maldevelopment and adult-onset type 2 diabetes, hypertension and osteoporosis with concurrent maternal quercetin supplementation during pregnancy. Collectively, these data suggested that maternal HFD increases placental OS and vascular damage during pregnancy, which are associated with fetal malformation and elevated adult-onset multisystemic chronic diseases. Maternal quercetin supplementation must be further explored as a potential dietary intervention for improved placental integrity, fetal development and lifelong health.
    URI
    http://hdl.handle.net/10919/26700
    Collections
    • Doctoral Dissertations [15819]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us