Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Application of Anti-Optimization in the Process of Validating Aerodynamic Codes

    Thumbnail
    View/Open
    JRC_PhD_V2.pdf (4.639Mb)
    Downloads: 173
    Date
    2003-04-04
    Author
    Cruz, Juan Ramón
    Metadata
    Show full item record
    Abstract
    An investigation was conducted to assess the usefulness of anti-optimization in the process of validating of aerodynamic codes. Anti-optimization is defined here as the intentional search for regions where the computational and experimental results disagree. Maximizing such disagreements can be a useful tool in uncovering errors and/or weaknesses in both analyses and experiments. The codes chosen for this investigation were an airfoil code and a lifting line code used together as an analysis to predict three-dimensional wing aerodynamic coefficients. The parameter of interest was the maximum lift coefficient of the three-dimensional wing, CL max. The test domain encompassed Mach numbers from 0.3 to 0.8, and Reynolds numbers from 25,000 to 250,000. A simple rectangular wing was designed for the experiment. A wind tunnel model of this wing was built and tested in the NASA Langley Transonic Dynamics Tunnel. Selection of the test conditions (i.e., Mach and Reynolds numbers) were made by applying the techniques of response surface methodology and considerations involving the predicted experimental uncertainty. The test was planned and executed in two phases. In the first phase runs were conducted at the pre-planned test conditions. Based on these results additional runs were conducted in areas where significant differences in CL max were observed between the computational results and the experiment — in essence applying the concept of anti-optimization. These additional runs were used to verify the differences in CL max and assess the extent of the region where these differences occurred. The results of the experiment showed that the analysis was capable of predicting CL max to within 0.05 over most of the test domain. The application of anti-optimization succeeded in identifying a region where the computational and experimental values of CL max differed by more than 0.05, demonstrating the usefulness of anti-optimization in process of validating aerodynamic codes. This region was centered at a Mach number of 0.55 and a Reynolds number of 34,000. Including considerations of the uncertainties in the computational and experimental results confirmed that the disagreement was real and not an artifact of the uncertainties.
    URI
    http://hdl.handle.net/10919/26960
    Collections
    • Doctoral Dissertations [15775]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us