Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Explicit Memory and Brain-Electrical Activity in 10-month-old Infants

    Thumbnail
    View/Open
    Morasch_ETD.pdf (470.1Kb)
    Downloads: 78
    Morasch_IRB.pdf (128.5Kb)
    Downloads: 63
    Date
    2007-04-13
    Author
    Morasch, Katherine Colona
    Metadata
    Show full item record
    Abstract
    One of the most intriguing and enduring issues in contemporary developmental cognitive neuroscience centers on the development of the ability to remember past experiences and the neural systems which support this capacity. Over the past 25 years, through methodological advancements and direct challenges to established assumptions, the focus of this developmental question has shifted to highlight the second half of the first year of life as the time when true explicit memory functionally emerges and begins to rapidly develop. The purpose of the following study was to test specific hypotheses regarding the biobehavioral development of explicit memory during infancy and present a new approach to studying the behavioral and physiological expression of this system. This study, which was guided by hypothesized neural substrates of this memory system, is the first direct investigation of continuous brain electrical activity during both the encoding and retrieval phases of explicit memory processing in infants. Memory-related differences in behavior and task-related brain activity in individual cortical areas were of particular interest. The results of this study provided some support for the hypothesis that baseline-to-task changes in EEG power can distinguish between successful and unsuccessful ordered-recall memory. Specifically, decreases in brain-electrical activity relative to a baseline period were found at both frontal and temporal locations during stimulus encoding and retrieval for infants who failed the recall tests. However, either no change, or increases in EEG power at frontal and temporal sites was related to successful performance on this task. In addition, different patterns of brain-electrical activity were present for correct and incorrect responses from the same child. This study contributes to our understanding of the biobehavioral expression of infant explicit memory in three main ways. First, changes in both frontal and temporal lobe activity are directly involved in explicit memory processing both during event encoding as well as retrieval. Second, this work provides evidence of a developmentally appropriate and valid pattern of electrophysiology specific to explicit memory processing. Finally, this study bridges the gap between a classic behavioral task of infant memory (which has been conceptually linked to neuropsychological data) and current developmental cognitive neuroscience.
    URI
    http://hdl.handle.net/10919/27065
    Collections
    • Doctoral Dissertations [16575]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us