Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Guided Wave Structural Health Monitoring with Environmental Considerations

    Thumbnail
    View/Open
    Dodson_JC_D_2012.pdf (5.812Mb)
    Downloads: 1659
    Date
    2012-04-09
    Author
    Dodson, Jacob Christopher
    Metadata
    Show full item record
    Abstract
    Damage detection in mechanical and aerospace structures is critical to maintaining safe and optimal performance. The early detection of damage increases safety and reduces cost of maintenance and repair. Structural Health Monitoring (SHM) integrates sensor networks and structures to autonomously interrogate the structure and detect damage. The development of robust SHM systems is becoming more vital as aerospace structures are becoming more complex. New SHM methods that can determine the health of the structure without using traditional non-destructive evaluation techniques will decrease the cost and time associated with these investigations. The primary SHM method uses the signals recorded on a pristine structure as a reference and compares operational signals to the baseline measurement. One of the current limitations of baseline SHM is that environmental factors, such as temperature and stress, can change the system response so the algorithm indicates damage when there is none. Many structures which can benefit from SHM have multiple components and often have connections and interfaces that also can change under environmental conditions, thus changing the dynamics of the system. This dissertation addresses some of the current limitations of SHM. First the changes that temperature variations and applied stress create on Lamb wave propagation velocity in plates is analytically modeled and validated. Two methods are developed for the analytical derivative of the Lamb wave velocity; the first uses assumes a thermoelastic material while the second expands thermoelastic theory to include thermal expansion and the associated stresses. A model is developed so the baseline measurement can be compensated to eliminate the false positives due to environmental conditions without storage of dispersion curves or baseline signals at each environmental state. Next, a wave based instantaneous baseline method is presented which uses the comparison of simultaneously captured real time signals and can be used to eliminate the influence of environmental effects on damage detection. Finally, wave transmission and conversion across interfaces in prestressed bars is modeled to provide a better understanding of how the coupled axial and flexural dynamics of a non-ideal preloaded interface change with applied load.
    URI
    http://hdl.handle.net/10919/27070
    Collections
    • Doctoral Dissertations [15778]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us