Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estrogen Regulates Interferon-gamma (IFN-g) and IFN-g-Inducible iNOS Gene Expression: Implications to Immunity and Autoimmunity

    Thumbnail
    View/Open
    karpuzoglu-sahin.pdf (10.39Mb)
    Downloads: 188
    Date
    2005-04-07
    Author
    Sahin, Ebru Karpuzoglu
    Metadata
    Show full item record
    Abstract
    It is now clear that estrogen not only modulates the differentiation and function of reproductive systems, but it also profoundly regulates the immune system of normal and autoimmune individuals. An important mechanism by which estrogen regulates the immune system is by altering the secretion and/or response to cytokines. We hypothesized that estrogen may alter the levels and/or response to IFN-g, a prototype Th1 cytokine, that plays a pivotal role in immunity against intracellular infections and in many autoimmune and inflammatory disorders. We found that estrogen treatment tended to upregulate the secretion of IFN-g protein and mRNA expression from Concanavalin-A (Con-A)-activated splenic lymphocytes. Impressively, we found that splenocytes from estrogen-treated mice when activated with Con-A also resulted in increased release of nitric oxide compared to placebo-treated mice. Furthermore, Con-A-activated splenocytes from estrogen-treated mice also had upregulated iNOS mRNA, iNOS protein, and nitric oxide-regulated COX-2 protein when compared to control mice. Blocking co-stimulatory signals mediated through interactions of CD28 and B7 molecules by using CTLA-4Ig markedly decreased not only IFN-g, but also nitric oxide, thereby implying an important role for CD28/B7 interactions in IFN-g/nitric oxide. Estrogen-induced upregulation of iNOS/nitric oxide is mediated through IFN-g since: (i) Estrogen alone did not upregulate iNOS/nitric oxide in IFN-g knockout mice; (ii) addition of rIFN-g to activated splenocytes from estrogen-treated mice further upregulated nitric oxide levels. We next investigated whether estrogen also upregulated IFN-g-inducing cytokines and select IFN-g-inducing transcription factors. Estrogen treatment resulted in increased mRNA and/or protein expression of IFN-g inducing cytokines and their receptors, including: IL-18, IL-15, IL-27, IL-12Rb2, and IL-18Rb. We also found that T-bet, a critical Th1 transcription factor, and STAT-4 phosphorylation, a key molecule in IL-12 signaling were both increased, while IRF-4, an important player in Th2 differentiation, was diminished in Con-A-activated splenocytes from mice treated with estrogen. Altogether, these studies are the first to demonstrate that estrogen regulates IFN-g-dependent iNOS and describes the potential mechanisms of how estrogen alters IFN-g-inducible genes, IFN-g inducing cytokines, and transcription factors in normal C57BL/6 mice. These studies may have profound implications to many autoimmune and inflammatory disorders, where estrogen is known to regulate the course of these diseases. Since estrogen may promote inflammatory disorders by upregulating pro-inflammatory biomolecules including IFN-g, nitric oxide, and COX-2, these studies may help in the design of therapeutic agents that regulate or block secretion and/or response to these inflammatory molecules.
    URI
    http://hdl.handle.net/10919/27129
    Collections
    • Doctoral Dissertations [14874]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us