Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Micromechanics of Granular Media: A Fundamental Study of Interphase Systems

    Thumbnail
    View/Open
    Frontmatter.pdf (150.8Kb)
    Downloads: 153
    Chapter-1.pdf (562.1Kb)
    Downloads: 141
    Chapter-2.pdf (15.95Mb)
    Downloads: 370
    Chapter-3.pdf (8.229Mb)
    Downloads: 151
    Chapter-4.pdf (10.07Mb)
    Downloads: 404
    Chapter-5.pdf (3.717Mb)
    Downloads: 249
    Chapter-6.pdf (726.3Kb)
    Downloads: 121
    Chapter-7.pdf (41.41Kb)
    Downloads: 56
    Appendix.pdf (172.0Kb)
    Downloads: 88
    Date
    2006-04-21
    Author
    Wang, Jianfeng
    Metadata
    Show full item record
    Abstract
    The interphase is a localized region adjacent to a manufactured inclusion that is surrounded by granular soil. These regions are ubiquitous in civil infrastructure and often are components of large-scale composite systems. The interphase region influences load-deformation behavior of the entire composite system. However, mechanisms that control the mechanical behavior of the interphase region and, in turn, control the composite structure behavior, are not clearly understood. Few relationships exist for predicting interphase behavior from properties of granular materials and the inclusion surface that can be measured in the laboratory. A two dimensional discrete element model of a general interphase system was developed and validated against laboratory data. Numerical experiments are conducted with varying soil to inclusion relative geometry. A new micromechanics-based approach, which utilizes microscopic quantities to explain the mechanics of granular media from a continuum point view, is adopted to investigate the mechanisms that underlie the interphase behavior. It is shown that the grain to inclusion surface relative geometry controls the degree of granular media strength mobilization by controlling development of fabric and contact force anisotropy inside the interphase region. A unique bilinear relationship exists between the mobilized granular media strength and the principal direction of average contact force anisotropy at the interface between the particles touching the surface and the inclusion. These findings suggest the problem is one of contact and can not be solved using purely geometric correlations, as past research presumed. A fundamental mechanism of behavior, long sought in geomechanics problems, is presented. Publications resulting from this research are significant and original contributions to the geoengineering, material science, geophysics and granular physics literature.
    URI
    http://hdl.handle.net/10919/27216
    Collections
    • Doctoral Dissertations [14857]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us