Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrated Mobility and Service Management for Network Cost Minimization in Wireless Mesh Networks

    Thumbnail
    View/Open
    Li_Y_D_2012.pdf (2.938Mb)
    Downloads: 299
    Date
    2012-04-30
    Author
    Li, Yinan
    Metadata
    Show full item record
    Abstract
    In this dissertation research, we design and analyze integrated mobility and service manage- ment for network cost minimization in Wireless Mesh Networks (WMNs). We first investigate the problem of mobility management in WMNs for which we propose two efficient per-user mobility management schemes based on pointer forwarding, and then a third one that integrates routing- based location update and pointer forwarding for further performance improvement. We further study integrated mobility and service management for which we propose protocols that support efficient mobile data access services with cache consistency management, and mobile multicast services. We also investigate reliable and secure integrated mobility and service man- agement in WMNs, and apply the idea to the design of a protocol for secure and reliable mobile multicast. The most salient feature of our protocols is that they are optimal on a per-user basis (or on a per-group basis for mobile multicast), that is, the overall network communication cost incurred is minimized for each individual user (or group). Per-user based optimization is critical because mobile users normally have vastly different mobility and service characteristics. Thus, the overall cost saving due to per-user based optimization is cumulatively significant with an increasing mobile user population. To evaluate the performance of our proposed protocols, we develop mathematical models and computational procedures used to compute the network communication cost incurred and build simulation systems for validating the results obtained from analytical modeling. We identify optimal design settings under which the network cost is minimized for our mobility and service management protocols in WMNs. Intensive comparative performance studies are carried out to compare our protocols with existing work in the literature. The results show that our protocols significantly outperform existing protocols under identical environmental and operational settings. We extend the design notion of integrated mobility and service management for cost minimiza- tion to MANETs and propose a scalable dual-region mobility management scheme for location- based routing. The basic design concept is to use local regions to complement home regions and have mobile nodes in the home region of a mobile node serve as location servers for that node. We develop a mathematical model to derive the optimal home region size and local region size under which overall network cost incurred is minimized. Through a comparative performance study, we show that dual-region mobility management outperforms existing mobility management schemes based on static home regions.
    URI
    http://hdl.handle.net/10919/27622
    Collections
    • Doctoral Dissertations [14904]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us