Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Intelligent Fusion of Evidence from Multiple Sources for Text Classification

    Thumbnail
    View/Open
    BaopingDissertationFinal.pdf (3.606Mb)
    Downloads: 325
    Date
    2006-06-20
    Author
    Zhang, Baoping
    Metadata
    Show full item record
    Abstract
    Automatic text classification using current approaches is known to perform poorly when documents are noisy or when limited amounts of textual content is available. Yet, many users need access to such documents, which are found in large numbers in digital libraries and in the WWW. If documents are not classified, they are difficult to find when browsing. Further, searching precision suffers when categories cannot be checked, since many documents may be retrieved that would fail to meet category constraints. In this work, we study how different types of evidence from multiple sources can be intelligently fused to improve classification of text documents into predefined categories. We present a classification framework based on an inductive learning method -- Genetic Programming (GP) -- to fuse evidence from multiple sources. We show that good classification is possible with documents which are noisy or which have small amounts of text (e.g., short metadata records) -- if multiple sources of evidence are fused in an intelligent way. The framework is validated through experiments performed on documents in two testbeds. One is the ACM Digital Library (using a subset available in connection with CITIDEL, part of NSF's National Science Digital Library). The other is Web data, in particular that portion associated with the Cadê Web directory. Our studies have shown that improvement can be achieved relative to other machine learning approaches if genetic programming methods are combined with classifiers such as kNN. Extensive analysis was performed to study the results generated through the GP-based fusion approach and to understand key factors that promote good classification.
    URI
    http://hdl.handle.net/10919/28198
    Collections
    • Doctoral Dissertations [14904]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us