Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Semantic Interaction for Visual Analytics: Inferring Analytical Reasoning for Model Steering

    Thumbnail
    View/Open
    Endert_A_D_2012.pdf (24.87Mb)
    Downloads: 131
    Date
    2012-07-10
    Author
    Endert, Alex
    Metadata
    Show full item record
    Abstract
    User interaction in visual analytic systems is critical to enabling visual data exploration. Through interacting with visualizations, users engage in sensemaking, a process of developing and understanding relationships within datasets through foraging and synthesis. For example, two-dimensional layouts of high-dimensional data can be generated by dimension reduction models, and provide users with an overview of the relationships between information. However, exploring such spatializations can require expertise with the internal mechanisms and parameters of these models. The core contribution of this work is semantic interaction, capable of steering such models without requiring expertise in dimension reduction models, but instead leveraging the domain expertise of the user. Semantic interaction infers the analytical reasoning of the user with model updates, steering the dimension reduction model for visual data exploration. As such, it is an approach to user interaction that leverages interactions designed for synthesis, and couples them with the underlying mathematical model to provide computational support for foraging. As a result, semantic interaction performs incremental model learning to enable synergy between the user's insights and the mathematical model. The contributions of this work are organized by providing a description of the principles of semantic interaction, providing design guidelines through the development of a visual analytic prototype, ForceSPIRE, and the evaluation of the impact of semantic interaction on the analytic process. The positive results of semantic interaction open a fundamentally new design space for designing user interactions in visual analytic systems. This research was funded in part by the National Science Foundation, CCF-0937071 and CCF-0937133, the Institute for Critical Technology and Applied Science at Virginia Tech, and the National Geospatial-Intelligence Agency contract #HMI1582-05-1-2001.
    URI
    http://hdl.handle.net/10919/28265
    Collections
    • Doctoral Dissertations [16435]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us