Identification and Characterization of Late Pathway Enzymes in Phytic Acid Biosynthesis in Glycine max

TR Number
Date
2007-07-30
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Phytic acid, also known as myo-inositol hexakisphosphate or Ins(1,2,3,4,5,6)P6, is the major storage form of phosphorus in plant seeds. Phytic acid is poorly digested by non-ruminant animals such as swine and poultry, and it chelates mineral cations including calcium, iron, zinc, and potassium, classifying it as an anti-nutrient. The excretion of unutilized phytic acid in manure translates to an excess amount of phosphorus runoff that can lead to eutrophication of lakes and ponds. Understanding the phytic acid biosynthetic pathway will allow for the development of low phytic acid (lpa) soybeans by the down-regulation of specific genes. The goal of this research was to elucidate the pathway(s) for phytic acid biosynthesis in soybean (Glycine max). We have isolated several myo-inositol phosphate kinase genes in soybean as possible candidates for steps in the biosynthetic pathway. We have characterized the genes for four myo-inositol(1,3,4)P3 5/6-kinases (GmItpk1-4), one myo-inositol(1,4,5)P3 6/3/5-kinase (GmIpk2), and one myo-inositol(1,3,4,5,6)P5 2-kinase (GmIpk1). We have examined expression in developing seeds and other tissues by Northern blot analysis and quantitative RT-PCR. We have expressed all six genes as tagged fusion proteins in E. coli, and verified enzyme activity on the proposed substrates. For each enzyme, we have conducted biochemical characterization to determine enzyme kinetics and substrate specificities. We have verified in vivo activity of GmIpk2 and GmIpk1 by complementing yeast mutants in the respective genes. Our studies indicate the likelihood that three of the genes may be involved in phytic acid biosynthesis: GmItpk3, GmIpk2 and GmIpk1. For future work, to more fully understand the contribution of each kinase gene to phytic acid biosynthesis, an RNA interference approach will be employed. The gene sequences identified in this study will be used to construct silencing vectors for use in future transformation of soybean embryogenic cultures to determine the effects of down-regulation on myo-inositol phosphate profiles.

Description
Keywords
pathway, phytate, phytic acid, soybean, Glycine max, myo-inositol kinase
Citation