Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient Concurrent Operations in Spatial Databases

    Thumbnail
    View/Open
    DAI_J_D_2009.pdf (4.825Mb)
    Downloads: 519
    Date
    2009-09-04
    Author
    Dai, Jing
    Metadata
    Show full item record
    Abstract
    As demanded by applications such as GIS, CAD, ecology analysis, and space research, efficient spatial data access methods have attracted much research. Especially, moving object management and continuous spatial queries are becoming highlighted in the spatial database area. However, most of the existing spatial query processing approaches were designed for single-user environments, which may not ensure correctness and data consistency in multiple-user environments. This research focuses on designing efficient concurrent operations on spatial datasets. Current multidimensional data access methods can be categorized into two types: 1) pure multidimensional indexing structures such as the R-tree family and grid file; 2) linear spatial access methods, represented by the Space-Filling Curve (SFC) combined with B-trees. Concurrency control protocols have been designed for some pure multidimensional indexing structures, but none of them is suitable for variants of R-trees with object clipping, which are efficient in searching. On the other hand, there is no concurrency control protocol designed for linear spatial indexing structures, where the one-dimensional concurrency control protocols cannot be directly applied. Furthermore, the recently designed query processing approaches for moving objects have not been protected by any efficient concurrency control protocols. In this research, solutions for efficient concurrent access frameworks on both types of spatial indexing structures are provided, as well as for continuous query processing on moving objects, for multiple-user environments. These concurrent access frameworks can satisfy the concurrency control requirements, while providing outstanding performance for concurrent queries. Major contributions of this research include: (1) a new efficient spatial indexing approach with object clipping technique, ZR+-tree, that outperforms R-tree and R+-tree on searching; (2) a concurrency control protocol, GLIP, to provide high throughput and phantom update protection on spatial indexing with object clipping; (3) efficient concurrent operations for indices based on linear spatial access methods, which form up the CLAM protocol; (4) efficient concurrent continuous query processing on moving objects for both R-tree-based and linear spatial indexing frameworks; (5) a generic access framework, Disposable Index, for optimal location update and parallel search.
    URI
    http://hdl.handle.net/10919/28987
    Collections
    • Doctoral Dissertations [16562]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us