Nonlinear Vibrations of Doubly Curved Cross-PLy Shallow Shells
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The objective of this work is to study the local and global nonlinear vibrations of isotropic single-layered and multi-layered cross-ply doubly curved shallow shells with simply supported boundary conditions. The study is based-on the full nonlinear partial-differential equations of motion for shells. These equations of motion are based-on the von K'{a}rm'{a}n-type geometric nonlinear theory and the first-order shear-deformation theory, they are developed by using a variational approach. Many approximate shell theories are presented.
We used two approaches to study the responses of shells to a primary resonance: a
For the global analysis, a finite number of equations are integrated numerically to calculate the limit cycles and their stability, and hence their bifurcations, using Floquet theory. The use of this theory requires integrating
The discretized system of equation are used to study the nonlinear vibrations of shells to subharmonic resonances of order one-half. The effect of the number of modes retained in the approximation is presented. Also, the effect of the number of layers on the shell parameters is shown.
Modal interaction between the first and second modes in the case of a two-to-one internal resonance is investigated. We use the method of multiple scales to determine the modulation equations that govern the slow dynamics of the response. A pseudo-arclength scheme is used to determine the fixed points of the modulation equations and the stability of these fixed points is investigated. In some cases, the fixed points undergo Hopf bifurcations, which result in dynamic solutions. A combination of a long-time integration and Floquet theory is used to determine the detailed solution branches and chaotic solutions and their stability. The limit cycles may undergo symmetry-breaking, saddle node, and period-doubling bifurcations.