Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Omnidirectional Vision for an Autonomous Surface Vehicle

    Thumbnail
    View/Open
    dissertation.pdf (9.030Mb)
    Downloads: 688
    Date
    2008-12-05
    Author
    Gong, Xiaojin
    Metadata
    Show full item record
    Abstract
    Due to the wide field of view, omnidirectional cameras have been extensively used in many applications, including surveillance and autonomous navigation. In order to implement a fully autonomous system, one of the essential problems is construction of an accurate, dynamic environment model. In Computer Vision this is called structure from stereo or motion (SFSM). The work in this dissertation addresses omnidirectional vision based SFSM for the navigation of an autonomous surface vehicle (ASV), and implements a vision system capable of locating stationary obstacles and detecting moving objects in real time. The environments where the ASV navigates are complex and fully of noise, system performance hence is a primary concern. In this dissertation, we thoroughly investigate the performance of range estimation for our omnidirectional vision system, regarding to different omnidirectional stereo configurations and considering kinds of noise, for instance, disturbances in calibration, stereo configuration, and image processing. The result of performance analysis is very important for our applications, which not only impacts the ASVâ s navigation, also guides the development of our omnidirectional stereo vision system. Another big challenge is to deal with noisy image data attained from riverine environments. In our vision system, a four-step image processing procedure is designed: feature detection, feature tracking, motion detection, and outlier rejection. The choice of point-wise features and outlier rejection based method makes motion detection and stationary obstacle detection efficient. Long run outdoor experiments are conducted in real time and show the effectiveness of the system.
    URI
    http://hdl.handle.net/10919/30175
    Collections
    • Doctoral Dissertations [14973]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us