Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive Predictive Feedback Techniques for Vibration Control

    Thumbnail
    View/Open
    Etd.pdf (1.243Mb)
    Downloads: 296
    Date
    1998-02-03
    Author
    Eure, Kenneth W. II
    Metadata
    Show full item record
    Abstract
    In this dissertation, adaptive predictive feedback control is used to suppress plate vibrations. The adaptive predictive controller consists of an on-line identification technique coupled with a control scheme. Various system identification techniques are investigated and implemented including batch least squares, projection algorithm, and recursive least squares. The control algorithms used include Generalized Predictive Control and Deadbeat Predictive Control. This dissertation combines system identification and control to regulate broadband disturbances in modally-dense structures. As it is assumed that the system to be regulated is unknown or time varying, the control schemes presented in this work have the ability to identify and regulate a plant with only an initial estimate of the system order. In addition, theoretical development and experimental results presented in this work confirm the fact that an adaptive controller operating in the presence of disturbances will automatically incorporate an internal noise model of the disturbance perturbing the plant if the system model order is chosen sufficiently large. It is also shown that the adaptive controller has the ability to track changes in the disturbance spectrum as well as track a time varying plant under certain conditions. This work presents a broadband multi-input multi-output control scheme which utilizes both the DSP processor and the PC processor in order to handle the computational demand of broadband regulation of a modally-dense plant. Also, the system identification technique and the control algorithm may be combined to produce a direct adaptive control scheme which estimates the control parameters directly from input and output data. Experimental results for various control techniques are presented using an acoustic plant, a rectangular plate with clamped boundary conditions, and a time varying plate.
    URI
    http://hdl.handle.net/10919/30342
    Collections
    • Doctoral Dissertations [16816]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us