Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fermion Quantum Field Theory In Black-hole Spacetimes

    Thumbnail
    View/Open
    SAHMAD.PDF (567.1Kb)
    Downloads: 195
    Date
    1997-04-18
    Author
    Ahmad, Syed Alwi B.
    Metadata
    Show full item record
    Abstract
    The need to construct a fermion quantum field theory in black-hole spacetimes is an acute one. The study of gravitational collapse necessitates the need of such. In this dissertation, we construct the theory of free fermions living on the static Schwarzschild black-hole and the rotating Kerr black-hole. The construction capitalises upon the fact that both black-holes are stationary axisymmetric solutions to Einstein's equation. A factorisability ansatz is developed whereby simple quantum modes can be found, for such stationary spacetimes with azimuthal symmetry. These modes are then employed for the purposes of a canonical quantisation of the corresponding fermionic theory. At the same time, we suggest that it may be impossible to extend a quantum field theory continuously across an event horizon. This split of a quantum field theory ensures the thermal character of the Hawking radiation. In our case, we compute and prove that the spectrum of neutrinos emitted from a black-hole via the Hawking process is indeed thermal. We also study fermion scattering amplitudes off the Schwarzschild black-hole.
    URI
    http://hdl.handle.net/10919/30491
    Collections
    • Doctoral Dissertations [14971]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us