Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parametric spatial modal analysis of beams

    Thumbnail
    View/Open
    LD5655.V856_1993.A724.pdf (12.75Mb)
    Downloads: 180
    Date
    1993-07-04
    Author
    Archibald, Charles Mark
    Metadata
    Show full item record
    Abstract
    Modal analysis is the experimental characterization of the dynanlical behavior of a structure. Recent advances in laser velocimetery have made available to the experimentalist a rich, new source of vibration data. Data can now be obtained from many different spatial locations on a structure. A method is presented to use this new data for the analysis of beams. Two approaches are investigated: minimum residual methods and boundary condition methods. The minimum residual approaches include autoregressive methods and non-linear least squares techniques. Significant contributions to sample rate considerations for parametric sinusoidal estimation resulted from this research. The minimum residual methods provide a good connection between the measured data and the fitted model. However, they do not yield a true modal decomposition of the spatial data. The boundary condition approach provides a complete modal model that is based on the spatial data and is completely compatible with classical beam theory. All theoretical constraints are included in the procedure. Monte Carlo investigations describe the statistical characteristics of the methods. Experiments using beams validate the methods presented. Advantages and limitations of each approach are discussed.
    URI
    http://hdl.handle.net/10919/37278
    Collections
    • Doctoral Dissertations [16340]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us