Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis and characterization of poly(arylene ether)s containing phosphorus, sulfur and heterocyclic pendant moieties

    Thumbnail
    View/Open
    LD5655.V856_1994.P753.pdf (33.10Mb)
    Downloads: 75
    Date
    1994
    Author
    Priddy, Duane B.
    Metadata
    Show full item record
    Abstract
    Poly(arylene ether)s containing phosphorus, sulfur, and heterocyclic pendant moieties were synthesized and their properties investigated. The preparation of monomers containing phosphorus as well as monomers derived from phenolphthalein were synthesized in high purity. These monomers were then successfully polymerized by a nucleophilic displacement reaction to prepare poly(arylene ether)s of both high and controlled molecular weight. The novel poly(arylene ether)s based on phenolphthalein had glass transition temperatures ranging from 265 to 312 °C. Furthermore, the modulus of these macromolecules was significantly higher than that of typical poly(arylene ether)s (e.g. bisphenol A based systems), probably as a result of enhanced intermolecular forces. Phenolphthalein in poly(arylene ether)s has been shown not only to improve the thermal and mechanical properties, but also it provides a pendant functional group for chemical modification of the polymer. As a result, a base polymer can be customized to a variety of new materials using derivatization techniques. The possibility of metal complexing in phenolphthalein poly(arylene ether)s was also investigated. A variety of reactive and non-reactive end-capped poly(arylene ether)s of controlled molecular weight were synthesized for use in reactive toughening modified epoxy and cyanate ester networks and these results are briefly summarized. Model studies using HPLC were also conducted to determine reaction kinetics in nucleophilic poly(arylene ether) formation. The results demonstrate that potassium carbonate mediated step polymerizations likely proceed with etherification of one of the phenolic groups, prior to difunctional coupling, which can achieve high molecular weight. The formation of cyclic oligomers in the step-growth polymerization of poly(arylene ether)s was also studied.
    URI
    http://hdl.handle.net/10919/37342
    Collections
    • Doctoral Dissertations [16816]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us