Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parameter estimation for exponential signals in colored noise using the pseudo-autoregressive (PAR) model

    Thumbnail
    View/Open
    LD5655.V856_1995.K73.pdf (4.094Mb)
    Downloads: 48
    Date
    1995-04-15
    Author
    Kou, Tong-Zhang
    Metadata
    Show full item record
    Abstract
    Most modem techniques for high resolution processing of closely spaced signals assume either uncorrelated noise or require knowledge of the noise covariance matrix. These assumptions are often invalid in practice. Here we propose a Pseudo-Autoregressive (PAR (M, p) model for estimation of an arbitrary number of signals M in the presence of a p-th order autoregressive (AR) noise environment. We derive the Cramer-Rao Lower Bound (CRLB) for the parameters of damped exponential signals in the colored noise case. A closed-form expression for the Cramer-Rao Lower Bound for the Pseudo-Autoregressive (PAR(M,p) model is obtained. Some special cases are investigated, for example, the PAR(M,p) model for p = 0, i.e., the white noise case, where our results agree with previous research results. We then evaluate the Cramer-Rao Lower Bound for two possibly closely spaced signals in a colored noise environment, showing that the colored noise assumption can lead to a much lower variance bound for the exponential parameters than under the white noise assumption. An algorithmic procedure is presented for the identification of the parameters of exponential signals, measured in colored noise. Previous papers on identifying sinusoids in noise have concentrated mainly on white noise disturbances. In a practical environment however, the disturbance is usually colored; sea-clutter in a radar context, is a lowpass type noise for example. When least squares type estimates are used in the colored noise environment, this usually leads to an unacceptable bias in the estimates. We propose an identification method, named Singular Value Decomposition Bias Elimination (SVDBE), in which it is assumed that the noise can be represented well by an AR process. The parameters of this noise model are then iteratively estimated along with the exponential signal parameters, via Singular Value Decomposition (SVD) based least squares. The iteration process starts with the white noise assumption, and improves on that by allowing the parameters in the noise model to vary away from the white noise case. A high order modal decomposition is found, and the best subset of the identified modes is selected. Simulations assess the merits of the introduced SVDBE algorithm, by comparison of the estimation results with the derived Cramer-Rao Lower Bound.
    URI
    http://hdl.handle.net/10919/37482
    Collections
    • Doctoral Dissertations [15775]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us