Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Perfect hashing and related problems

    Thumbnail
    View/Open
    LD5655.V856_1993.J888.pdf (3.578Mb)
    Downloads: 260
    Date
    1993-06-05
    Author
    Juvvadi, Ramana Rao
    Metadata
    Show full item record
    Abstract
    One of the most common tasks in many computer applications is the maintenance of a dictionary of words. The three most basic operations on the dictionary are find, insert, and delete. An important data structure that supports these operations is a hash table. On a hash table, a basic operation takes 𝑂(1) time in the average case and 𝑂(𝑛) time in the worst case, where n is the number of words in the dictionary. While an ordinary hash function maps the words in a dictionary to a hash table with collisions, a perfect hash function maps the words in a dictionary to a hash table with no collisions. Thus, perfect hashing is a special case of hashing, in which a find operation takes 𝑂(1) time in the worst case, and an insert or a delete operation takes 𝑂(1) time in the average case and 𝑂(𝑛) time in the worst case. This thesis addresses the following issues: Mapping, ordering and searching (MOS) is a successful algorithmic approach to finding perfect hash functions for static dictionaries. Previously, no analysis has been given for the running time of the MOS algorithm. In this thesis, a lower bound is proved on the tradeoff between the time required to find a perfect hash function and the space required to represent the perfect hash function . A new algorithm for static dictionaries called the musical chairs(MC) algorithm is developed that is based on ordering the hyperedges of a graph. It is found experimentally that the MC algorithm runs faster than the MOS algorithm in all cases for which the MC algorithm is capable of finding a perfect hash function. A new perfect hashing algorithm is developed for dynamic dictionaries. In this algorithm, an insert or a delete operation takes 𝑂(1) time in the average case, and a find operation takes 𝑂(1) time in the worst case. The algorithm is modeled using results from queueing theory . An ordering problem from graph theory, motivated by the hypergraph ordering problem in the Me algorithm, is proved to be NP-complete.
    URI
    http://hdl.handle.net/10919/37704
    Collections
    • Doctoral Dissertations [14904]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us