Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inorganic-Organic Sol-Gel Derived Hybrid Materials as Abrasion Resistant Coatings

    Thumbnail
    View/Open
    Disser99.pdf (5.194Mb)
    Downloads: 6962
    Date
    1999-07-19
    Author
    Li, Chenghong
    Metadata
    Show full item record
    Abstract
    Inorganic-organic hybrid materials have been developed using sol-gel reactions of a trialkoxysilylated organic compound and a metal or semi-metal alkoxide and applied as coatings on polymeric or metallic substrates. Many of these coatings have demonstrated good to excellent abrasion resistance. Abrasion resistant coatings were prepared by hydrolysis and condensation of mixtures of a triethoxysilylated diethylenetriamine (f-DETA), tetramethoxysilane (TMOS), water and an alcohol in the presence of an acid catalyst (a one-step hydrolysis approach). The influences of many formulation and processing variables on the gelation time, optical properties, hardness and abrasion resistance were investigated. An aminolysis mechanism was also proposed to explain the adhesion between sol-gel derived coatings and polycarbonate substrates promoted by a 3-aminopropyltriethoxysilane (3-APS) primer. FT-IR, GPC, 1H and 13C NMR, XPS experiments were conducted to support this mechanism. The f-DETA/TMOS system is essentially a binary system of an alkyltriethoxysilane (T) and a tetraalkoxysilane (Q). At pH 0-2 and pH 4-5, the relative condensation reactivities of the T and Q species in this system were compared using 29Si NMR spectroscopy. After thermal curing, 13C or 29Si solid state NMR spectroscopy was used to estimate the extent of hydrolysis of the urea linkages in f-DETA, the concentration of residual alkoxysilane groups, and the extent of condensation for both T and Q species. The dependence of the morphology of f-DETA/TMOS gels on the pH and the water concentration was also investigated using AFM, SEM and SAXS. Many other trialkoxysilylated organic compounds containing urea, urethane, epoxy and siloxane linkages were also synthesized and utilized to prepare abrasion resistant coatings via a one-step hydrolysis approach, a two-step hydrolysis approach or a moisture-curing approach. Coatings derived from many of these systems or approaches demonstrated abrasion resistance comparable to that of the f-DETA/TMOS coating. Thin coatings were also derived from cubic octasilicate monomers via hydrosilylation or sol-gel reactions. These coatings were very transparent but unfortunately lacked abrasion resistance.
    URI
    http://hdl.handle.net/10919/39013
    Collections
    • Doctoral Dissertations [15920]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us