Aspects of the microwave induced plasma as an element selective detector for supercritical fluid chromatography and supercritical fluid extraction

TR Number
Date
1993-12-05
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The introduction of supercritical CO₂ at packed column supercritical fluid chromatography (SFC) flow rates is shown to significantly affect the excitation characteristics of a helium microwave induced plasma (He MIP). In this work, the influence of CO₂ on specific atomic and ionic transitions of Cl, Br, I, P, and S is described. Also presented is the determined relationship between transition energy and degree of signal depression resulting from the introduction of CO₂ to the plasma. Attempts to enhance the emission signals of non-metals by introducing H₂ into a He MIP are discussed. The inadequacy of excitation temperature, ionization temperature, rotational temperature, and electron number density measurements to determine the effect of CO₂ on the excitation characteristics of a He MIP is also described. However, application of kinetic theory and a recently developed theory on charge transfer allows a reasonable series of mechanisms to be developed that describe the excitation processes of a He MIP to which supercritical CO₂ is added. The remainder of this work describes a direct interface between a supercritical fluid extraction (SFE) vessel and an Ar MIP for the purpose of element selective detection. The response of the plasma to the introduction of sample via SFE at a variety of extraction temperatures, pressures, and sample concentrations is presented.

Description
Keywords
Citation