Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Apoptosis as a Mechanism of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-Induced Immunotoxicity

    Thumbnail
    View/Open
    CHP1.PDF (100.2Kb)
    Downloads: 39
    CHP2.PDF (121.5Kb)
    Downloads: 39
    CHP3.PDF (127.7Kb)
    Downloads: 48
    CHP4.PDF (235.8Kb)
    Downloads: 39
    CHP5.PDF (55.71Kb)
    Downloads: 23
    Date
    1998-11-10
    Author
    Kamath, Arati B.
    Metadata
    Show full item record
    Abstract
    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental pollutant and is well known for its immunotoxic effects, particularly on the thymus. The exact mechanism by which TCDD induces thymic atrophy is not known. In the current study, we investigated whether TCDD triggers apoptosis in the thymocytes and whether Fas and Fas ligand play a role in TCDD-mediated immunotoxicity. Administration of a single dose of TCDD at 0.1, 1, 5 or 50 mg/kg body weight intraperitoneally into C57BL/6 +/+ mice caused a significant dose-dependent decrease in the thymic cellularity; whereas, in the C57BL/6 lpr/lpr (lpr) (Fas-deficient) and C57BL/6 gld/gld (gld) (Fas ligand-defective) mice, TCDD failed to induce a decrease in thymic cellularity at doses of 0.1-5 mg/kg body weight. In the lpr and gld mice, thymic atrophy was seen only at 50 mg/kg body weight of TCDD. Significant apoptosis was detected within 8-12 hours after injection in the wild type mice, whereas, in the lpr and gld mice apoptosis could not be detected. Upon culturing the thymocytes from TCDD-treated mice for 24 hours in vitro, the wild-type cells showed increased apoptosis when compared to the control; whereas, similar cells from lpr and gld mice did not show apoptosis. Furthermore, TCDD-treatment caused significant alterations in the expression of surface molecules on the thymocytes in the wild-type mice and minimal changes in the lpr or gld mice. Sera from TCDD-treated wild-type mice also exhibited increased levels of soluble Fas ligand. Also, TCDD-induced apoptosis was inhibited both in vitro and in vivo by caspase inhibitors and other inhibitors of apoptosis. Together, the current study demonstrates that TCDD-induced apoptosis plays an important role in thymic atrophy caused by TCDD in vivo. Furthermore, phenotypic changes in the density of thymocyte surface molecules may serve as a useful biomarker for chemical toxicity involving apoptosis. The current study also demonstrates that Fas-Fas ligand interactions play an important role in the induction of apoptosis and immunotoxicity by TCDD.
    URI
    http://hdl.handle.net/10919/40094
    Collections
    • Doctoral Dissertations [15818]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us