Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Industry Based Fundamental Analysis: Using Neural Networks and a Dual-Layered Genetic Algorithm Approach

    Thumbnail
    View/Open
    01body.pdf (251.8Kb)
    Downloads: 97
    03vitae.pdf (7.640Kb)
    Downloads: 66
    Date
    1998-11-16
    Author
    Stivason, Charles T.
    Metadata
    Show full item record
    Abstract
    This research tests the ability of artificial learning methodologies to map market returns better than logistic regression. The learning methodologies used are neural networks and dual-layered genetic algorithms. These methodologies are used to develop a trading strategy to generate excess returns. The excess returns are compared to test the trading strategy's effectiveness. Market-adjusted and size-adjusted excess returns are calculated. Using a trading strategy based approach the logistic regression models generated greater returns than the neural network and dual-layered genetic algorithm models. It appears that the noise in the financial markets prevents the artificial learning methodologies from properly mapping the market returns. The results confirm the findings that fundamental analysis can be used to generate excess returns.
    URI
    http://hdl.handle.net/10919/40422
    Collections
    • Doctoral Dissertations [14901]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us