Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Bradley Department of Electrical and Computer Engineering
    • Scholarly Works, Electrical and Computer Engineering
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Bradley Department of Electrical and Computer Engineering
    • Scholarly Works, Electrical and Computer Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Interferometric Model For Phase Analysis in Fiber Couplers

    Thumbnail
    View/Open
    Main article (367.8Kb)
    Downloads: 1738
    Date
    1996-07-01
    Author
    Fang, Xiaojun
    Claus, Richard O.
    Indebetouw, Guy J.
    Metadata
    Show full item record
    Abstract
    An interferometric model is proposed to estimate the phase differences in lossless, strongly coupled biconical fiber couplers. This approximate method is simpler than the traditional s-parameter network theory-based analysis technique and minimizes the number of unknowns. The phase difference between the transmitted and coupled light fields is directly related to the field interaction and can be estimated by employing the energy conservation and mode orthogonality principles. The maximum coupling coefficient and dependence of phase difference on coupling conditions can be analyzed for multiport single-mode fiber couplers. (C) 1996 Optical Society of America
    URI
    http://hdl.handle.net/10919/46924
    Collections
    • Scholarly Works, Department of Physics [847]
    • Scholarly Works, Electrical and Computer Engineering [676]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us