Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effective Fusion and Separation of Distribution, Fault-Tolerance, and Energy-Efficiency Concerns

    Thumbnail
    View/Open
    Kwon_Y_D_2014.pdf (13.47Mb)
    Downloads: 1276
    Date
    2014-07-03
    Author
    Kwon, Young Woo
    Metadata
    Show full item record
    Abstract
    As software applications are becoming increasingly distributed and mobile, their design and implementation are characterized by distributed software architectures, possibility of faults, and the need for energy awareness. Thus, software developers should be able to simultaneously reason about and handle the concerns of distribution, fault-tolerance, and energy-efficiency. Being closely intertwined, these concerns can introduce significant complexity into the design and implementation of modern software. In other words, to develop reliable and energy-efficient applications, software developers must understand how distribution, fault-tolerance, and energy-efficiency interplay with each other and how to implement these concerns while keeping the complexity in check. This dissertation addresses five technical issues that stand on the way of engineering reliable and energy-efficient software: (1) how can developers select and parameterize middleware to achieve the requisite levels of performance, reliability, and energy-efficiency? (2) how can one streamline the process of implementing and reusing fault tolerance functionality in distributed applications? (3) can automated techniques be developed to help transition centralized applications to using cloud-based services efficiently and reliably? (4) how can one leverage cloud-based resources to improve the energy-efficiency of mobile applications? (5) how can middleware be adapted to improve the energy-efficiency of distributed mobile applications operated over heterogeneous mobile networks? To address these issues, this research studies the concerns of distribution, fault-tolerance, and energy-efficiency as well as their interaction. It also develops novel approaches, techniques, and tools that effectively fuse and separate these concerns as required by particular software development scenarios. The specific innovations include (1) a systematic assessment of the performance, conciseness, complexity, reliability, and energy consumption of middleware mechanisms for accessing remote functionality, (2) a declarative approach to hardening distributed applications with resiliency against partial failure, (3) cloud refactoring, a set of automated program transformations for transitioning to using cloud-based services efficiently and reliably, (4) a cloud offloading approach that improves the energy-efficiency of mobile applications without compromising their reliability, (5) a middleware mechanism that optimizes energy consumption by adapting execution patterns dynamically in response to fluctuations in network conditions.
    URI
    http://hdl.handle.net/10919/49386
    Collections
    • Doctoral Dissertations [16021]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us