Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes

    Thumbnail
    View/Open
    1994_Comparison_lead_zirconate_titanate.pdf (1.214Mb)
    Downloads: 586
    Date
    1994-02-01
    Author
    Bursill, Les A.
    Reaney, Ian M.
    Vijay, Dilip P.
    Desu, Seshu B.
    Metadata
    Show full item record
    Abstract
    High-resolution and bright- and dark-field transmission electron microscopy are used to characterize and compare the interface structures and microstructure of PZT/RuO2/SiO2/Si and PZT/Pt/Ti/SiO2/Si ferroelectric thin films, with a view to understanding the improved fatigue characteristics of PZT thin films with RuO2 electrodes. The RuO2/PZT interface consists of a curved pseudoperiodic minimal surface. The interface is chemically sharp with virtually no intermixing of RuO2 and PZT, as evidenced by the atomic resolution images as well as energy dispersive x-ray analysis. A nanocrystalline pyrochlore phase Pb2ZrTiO7-x, x not equal 1, was found on the top surface of the PZT layer. The PZT/Pt/Ti/SiO2/Si thin film was well crystallized and showed sharp interfaces throughout. Possible reasons for the improved fatigue characteristics of PZT/RuO2/SiO2/Si thin films are discussed.
    URI
    http://hdl.handle.net/10919/52468
    Collections
    • Scholarly Works, Materials Science and Engineering (MSE) [409]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us