Stabilization of POD-ROMs
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis describes several approaches for stabilizing POD-ROMs (that is, reduced order models based on basis functions derived from the proper orthogonal decomposition) for both the CDR (convection-diffusion-reaction) equation and the NSEs (Navier-Stokes equations). Stabilization is necessary because standard POD-ROMs of convection-dominated problems usually display numerical instabilities.
The first stabilized ROM investigated is a streamline-upwind Petrov-Galerkin ROM (SUPG-ROM). I prove error estimates for the SUPG-ROM and derive optimal scalings for the stabilization parameter. I test the SUPG-ROM with the optimal parameter in the numerical simulation of a convection-dominated CDR problem. The SUPG-ROM yields more accurate results than the standard Galerkin ROM (G-ROM) by eliminating the inherent numerical artifacts (noise) in the data and dampening spurious oscillations.
I next propose two regularized ROMs (Reg-ROMs) based on ideas from large eddy simulation and turbulence theory: the Leray ROM (L-ROM) and the evolve-then-filter ROM (EF-ROM). Both Reg-ROMs use explicit POD spatial filtering to regularize (smooth) some of the terms in the standard G-ROM. I propose two different POD spatial filters: one based on the POD projection and a novel POD differential filter. These two new Reg-ROMs and the two spatial filters are investigated in the numerical simulation of the three-dimensional flow past a circular cylinder problem at Re = 100. The numerical results show that EF-ROM-DF is the most accurate Reg-ROM and filter combination and the differential filter generally yields better results than the projection filter. The Reg-ROMs perform significantly better than the standard G-ROM and decrease the CPU time (compared against the direct numerical simulation) by orders of magnitude (from about four days to four minutes).