Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High-frequency off-line power conversion using quasi-resonant and multi-resonant techniques

    Thumbnail
    View/Open
    LD5655.V856_1988.J672.pdf (10.03Mb)
    Downloads: 2662
    Date
    1988
    Author
    Jovanović, Milan Miodrag
    Metadata
    Show full item record
    Abstract
    Three recently-proposed power conversion technologies, the zero-current-switching (ZCS) and zero-voltage-switching (ZVS) quasi-resonant techniques, and the zero-voltage-switching multi-resonant technique, are evaluated for high-frequency, off-line applications. The study is performed with emphasis on the conversion-frequency range, efficiency, load range, input-voltage range, output power, dynamic response, and power density. A comprehensive dc analysis of the half-wave and full-wave, half-bridge zero-current-switched quasi-resonant converters (QRCs) is presented. Design procedures for closed-loop design of the converters are also derived. The procedures are used to design and fabricate half-wave and full-wave converters operating in the low-megahertz range and experimentally assess their suitability for high-frequency, off-line power conversion. The zero-voltage-switching technique is employed to further increase the conversion frequency. First, the half-bridge zero-voltage-switched quasi-resonant converter is analyzed and the trade-offs between its frequency range, load range, and efficiency are examined in detail. The multi-resonant-switch concept is applied to this converter to improve its characteristics, primarily its load range. A complete dc analysis of the zero-voltage-switched multi-resonant converter (MRC) is given and the dc voltage-conversion-ratio characteristics are derived. A graphic design procedure for the converter is established and is used to build an experimental 100 W, off-line converter operating in the frequency range of 2 MHz to 8 MHz. Finally, a comprehensive comparison of the QRCs and MRCs is performed and conditions where their applications appears most desirable are defined.
    URI
    http://hdl.handle.net/10919/53542
    Collections
    • Doctoral Dissertations [15771]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us