Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling Driving Risk Using Naturalistic Driving Study Data

    Thumbnail
    View/Open
    Fang_Y_D_2014.pdf (7.301Mb)
    Downloads: 1013
    Supporting documents (564.1Kb)
    Downloads: 157
    Date
    2014-10-21
    Author
    Fang, Youjia
    Metadata
    Show full item record
    Abstract
    Motor vehicle crashes are one of the leading causes of death in the United States. Traffic safety research targets at understanding the cause of crash, preventing the crash, and mitigating crash severity. This dissertation focuses on the driver-related traffic safety issues, in particular, on developing and implementing contemporary statistical modeling techniques on driving risk research on Naturalistic Driving Study data. The dissertation includes 5 chapters. In Chapter 1, I introduced the backgrounds of traffic safety research and naturalistic driving study. In Chapter 2, the state-of-practice statistical methods were implemented on individual driver risk assessment using NDS data. The study showed that critical-incident events and driver demographic characteristics can serve as good predictors for identifying risky drivers. In Chapter 3, I developed and evaluated a novel Bayesian random exposure method for Poisson regression models to account for situations where the exposure information needs to be estimated. Simulation studies and real data analysis on Cellphone Pilot Analysis study data showed that, random exposure models have significantly better model fitting performances and higher parameter coverage probabilities as compared to traditional fixed exposure models. The advantage is more apparent when the values of Poisson regression coefficients are large. In Chapter 4, I performed comprehensive simulation-based performance analyses to investigate the type-I error, power and coverage probabilities on summary effect size in classical meta-analysis models. The results shed some light for reference on the prospective and retrospective performance analysis in meta-analysis research. In Chapter 5, I implemented classical- and Bayesian-approach multi-group hierarchical models on 100-Car data. Simulation-based retrospective performance analyses were used to investigate the powers and parameter coverage probabilities among different hierarchical models. The results showed that under fixed-effects model context, complex secondary tasks are associated with higher driving risk.
    URI
    http://hdl.handle.net/10919/65151
    Collections
    • Doctoral Dissertations [15822]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us