Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robustness Analysis of Gene Regulatory Networks

    Thumbnail
    View/Open
    Kadelka_CT_D_2015.pdf (1.985Mb)
    Downloads: 502
    Supporting documents (349.8Kb)
    Downloads: 17
    Date
    2015-04-28
    Author
    Kadelka, Claus Thomas
    Metadata
    Show full item record
    Abstract
    Cells generally manage to maintain stable phenotypes in the face of widely varying environmental conditions. This fact is particularly surprising since the key step of gene expression is fundamentally a stochastic process. Many hypotheses have been suggested to explain this robustness. First, the special topology of gene regulatory networks (GRNs) seems to be an important factor as they possess feedforward loops and certain other topological features much more frequently than expected. Second, genes often regulate each other in a canalizing fashion: there exists a dominance order amidst the regulators of a gene, which in silico leads to very robust phenotypes. Lastly, an entirely novel gene regulatory mechanism, discovered and studied during the last two decades, which is believed to play an important role in cancer, is shedding some light on how canalization may in fact take place as part of a cell’s gene regulatory program. Short segments of single-stranded RNA, so-called microRNAs, which are embedded in several different types of feedforward loops, help smooth out noise and generate canalizing effects in gene regulation by overriding the effect of certain genes on others. Boolean networks and their multi-state extensions have been successfully used to model GRNs for many years. In this dissertation, GRNs are represented in the time- and statediscrete framework of Stochastic Discrete Dynamical Systems (SDDS), which captures the cell-inherent stochasticity. Each gene has finitely many different concentration levels and its concentration at the next time step is determined by a gene-specific update rule that depends on the current concentration of the gene’s regulators. The update rules in published gene regulatory networks are often nested canalizing functions. In Chapter 2, this class of functions is introduced, generalized and analyzed with respect to its potential to confer robustness. Chapter 3 describes a simulation study, which supports the hypothesis that microRNA-mediated feedforward loops have a stabilizing effect on GRNs. Chapter 4 focuses on the cellular DNA mismatch repair machinery. A first regulatory network for this machinery is introduced, partly validated and analyzed with regard to the role of microRNAs and certain genes in conferring robustness to this particular network. Due to steady exposure to mutations, GRNs have evolved over time into their current form. In Chapter 5, a new framework for modeling the evolution of GRNs is developed and then used to identify topological features that seem to stabilize GRNs on an evolutionary time-scale. Chapter 6 addresses a completely separate project in Bioinformatics. A novel functional enrichment method is developed and compared to various popular methods. Funding for this work was provided by NSF grant CMMI-0908201 and NSF grant 1062878.
    URI
    http://hdl.handle.net/10919/73302
    Collections
    • Doctoral Dissertations [14966]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us