Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit

    Thumbnail
    View/Open
    Accepted Version (2.241Mb)
    Downloads: 142
    Date
    2008-05-29
    Author
    Slade, Daniel J.
    Lovelace, Leslie L.
    Chruszcz, Maksymilian
    Minor, Wladek
    Lebioda, Lukasz
    Sodetz, James M.
    Metadata
    Show full item record
    Abstract
    Human C8 is one of five complement components (C5b, C6, C7, C8 and C9) that assemble on bacterial membranes to form a pore-like structure referred to as the "membrane attack complex" (MAC). C8 contains three genetically distinct subunits (C8α, C8β, Cγ.) arranged as a disulfide-linked C8α-γ dimer that is noncovalently associated with C8β. C6, C7 C8α, C8β and C9 are homologous. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. The C8γ subunit is unrelated and belongs to the lipocalin family of proteins that display a β-barrel fold and generally bind small, hydrophobic ligands. Several hundred proteins with MACPF domains have been identified based on sequence similarity; however, the structure and function of most are unknown. Crystal structures of the secreted bacterial protein Plu-MACPF and the human C8α MACPF domain were recently reported and both display a fold similar to the bacterial pore-forming cholesterol-dependent cytolysins (CDC). In the present study, we determined the crystal structure of the human C8α MACPF domain disulfide-linked to C8γ (αMACPF-γ) at 2.15 Å resolution. The αMACPF portion has the predicted CDC-like fold and shows two regions of interaction with C8γ. One is in a previously characterized 19-residue insertion (indel) in C8α and fills the entrance to the putative C8γ ligand binding site. The second is a hydrophobic pocket that makes contact with residues on the side of the C8γ β-barrel. The latter interaction induces conformational changes in αMACPF that are likely important for C8 function. Also observed is structural conservation of the MACPF signature motif Y/W-G-T/S-H-F/Y-X6-G-G in αMACPF and Plu-MACPF, and conservation of several key glycine residues known to be important for refolding and pore formation by CDCs.
    URI
    http://hdl.handle.net/10919/73411
    Collections
    • All Faculty Deposits [2258]
    • Scholarly Works, Department of Biochemistry [193]
    • Scholarly Works, Virginia Tech Center for Drug Discovery [35]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us