• Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Visualizing Algorithm Analysis Topics

    Thumbnail
    View/Open
    Farghally_MF_D_2016.pdf (3.051Mb)
    Downloads: 258
    Supporting documents (191.4Kb)
    Downloads: 126
    Supporting documents (191.3Kb)
    Downloads: 82
    Supporting documents (96.60Kb)
    Downloads: 178
    Date
    2016-11-30
    Author
    Farghally, Mohammed Fawzi Seddik
    Metadata
    Show full item record
    Abstract
    Data Structures and Algorithms (DSA) courses are critical for any computer science curriculum. DSA courses emphasize concepts related to procedural dynamics and Algorithm Analysis (AA). These concepts are hard for students to grasp when conveyed using traditional textbook material relying on text and static images. Algorithm Visualizations (AVs) emerged as a technique for conveying DSA concepts using interactive visual representations. Historically, AVs have dealt with portraying algorithm dynamics, and the AV developer community has decades of successful experience with this. But there exist few visualizations to present algorithm analysis concepts. This content is typically still conveyed using text and static images. We have devised an approach that we term Algorithm Analysis Visualizations (AAVs), capable of conveying AA concepts visually. In AAVs, analysis is presented as a series of slides where each statement of the explanation is connected to visuals that support the sentence. We developed a pool of AAVs targeting the basic concepts of AA. We also developed AAVs for basic sorting algorithms, providing a concrete depiction about how the running time analysis of these algorithms can be calculated. To evaluate AAVs, we conducted a quasi-experiment across two offerings of CS3114 at Virginia Tech. By analyzing OpenDSA student interaction logs, we found that intervention group students spent significantly more time viewing the material as compared to control group students who used traditional textual content. Intervention group students gave positive feedback regarding the usefulness of AAVs to help them understand the AA concepts presented in the course. In addition, intervention group students demonstrated better performance than control group students on the AA part of the final exam. The final exam taken by both the control and intervention groups was based on a pilot version of the Algorithm Analysis Concept Inventory (AACI) that was developed to target fundamental AA concepts and probe students' misconceptions about these concepts. The pilot AACI was developed using a Delphi process involving a group of DSA instructors, and was shown to be a valid and reliable instrument to gauge students' understanding of the basic AA topics.
    URI
    http://hdl.handle.net/10919/73539
    Collections
    • Doctoral Dissertations [13055]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us